摘要:
This invention provides a semiconductor device having high operation performance and high reliability. An LDD region 707 overlapping with a gate wiring is arranged in an n-channel TFT 802 forming a driving circuit, and a TFT structure highly resistant to hot carrier injection is achieved. LDD regions 717, 718, 719 and 720 not overlapping with a gate wiring are arranged in an n-channel TFT 804 forming a pixel unit. As a result, a TFT structure having a small OFF current value is achieved. In this instance, an element belonging to the Group 15 of the Periodic Table exists in a higher concentration in the LDD region 707 than in the LDD regions 717, 718, 719 and 720.
摘要:
This invention provides a semiconductor device having high operation performance and high reliability. An LDD region 707 overlapping with a gate wiring is arranged in an n-channel TFT 802 forming a driving circuit, and a TFT structure highly resistant to hot carrier injection is achieved. LDD regions 717, 718, 719 and 720 not overlapping with a gate wiring are arranged in an n-channel TFT 804 forming a pixel unit. As a result, a TFT structure having a small OFF current value is achieved. In this instance, an element belonging to the Group 15 of the Periodic Table exists in a higher concentration in the LDD region 707 than in the LDD regions 717, 718, 719 and 720.
摘要:
This invention provides a semiconductor device having high operation performance and high reliability. An LDD region 707 overlapping with a gate wiring is arranged in an n-channel TFT 802 forming a driving circuit, and a TFT structure highly resistant to hot carrier injection is achieved. LDD regions 717, 718, 719 and 720 not overlapping with a gate wiring are arranged in an n-channel TFT 804 forming a pixel unit. As a result, a TFT structure having a small OFF current value is achieved. In this instance, an element belonging to the Group 15 of the Periodic Table exists in a higher concentration in the LDD region 707 than in the LDD regions 717, 718, 719 and 720.
摘要:
This invention provides a semiconductor device having high operation performance and high reliability. An LDD region 707 overlapping with a gate wiring is arranged in an n-channel TFT 802 forming a driving circuit, and a TFT structure highly resistant to hot carrier injection is achieved. LDD regions 717, 718, 719 and 720 not overlapping with a gate wiring are arranged in an n-channel TFT 804 forming a pixel unit. As a result, a TFT structure having a small OFF current value is achieved. In this instance, an element belonging to the Group 15 of the Periodic Table exists in a higher concentration in the LDD region 707 than in the LDD regions 717, 718, 719 and 720.
摘要:
If the size of a single crystal silicon layer attached is not appropriate, even when a large glass substrate is used, the number of panels to be obtained cannot be maximized. Therefore, in the present invention, a substantially quadrangular single crystal semiconductor substrate is formed from a substantially circular single crystal semiconductor wafer, and a damaged layer is formed by irradiation with an ion beam into the single crystal semiconductor substrate. A plurality of the single crystal semiconductor substrates are arranged so as to be separated from each other over one surface of a supporting substrate. By thermal treatment, a crack is generated in the damaged layer and the single crystal semiconductor substrate is separated while a single semiconductor layer is left over the supporting substrate. After that, one or a plurality of display panels is manufactured from the single crystal semiconductor layer bonded to the supporting substrate.
摘要:
An active region, a source region, and a drain region are formed on a single crystal semiconductor substrate or a single crystal semiconductor thin film. Impurity regions called pinning regions are formed in striped form in the active region so as to reach both of the source region and the drain region. Regions interposed between the pinning regions serve as channel forming regions. A tunnel oxide film, a floating gate, a control gate, etc. are formed on the above structure. The impurity regions prevent a depletion layer from expanding from the source region toward the drain region.
摘要:
A display device suppresses the influence of variations of a current value supplied to a light emitting element caused by a temperature change. In particular, luminance variations caused by a temperature gradient in a pixel portion due to a heat generated from a source signal line driver circuit are suppressed. In a display device including a gate signal line provided in a row direction, a source signal line provided in a column direction, and a light emitting element in a pixel portion arranged in matrix corresponding to the gate signal line and the source signal line, a column of monitor elements is provided beside the pixel portion, a constant current is supplied to each row of the monitor elements, and a voltage generated at the monitor element for each row of pixels is applied to light emitting elements of the corresponding row.
摘要:
A display device includes a display panel and a shutter panel provided on a viewable side of the display panel. The shutter panel includes a plurality of first transparent electrodes provided over a first substrate, a plurality of second transparent electrodes provided over a second substrate, and a liquid crystal provided between the first substrate and the second substrate. The first transparent electrodes and the second transparent electrodes are arranged in striped patterns in a first direction and are both spaced in a second direction intersecting the first direction. Potentials of the first transparent electrodes and potentials of the second transparent electrodes are controlled to adjust an alignment of the liquid crystal, so that the shutter panel is provided with light-shielding regions arranged in a striped pattern in the first direction and spaced in the second direction and light-transmitting regions each of which is provided between the light-shielding regions.
摘要:
An object is to provide a display device on which 3D images can be perceived from a large area. A parallax barrier panel includes a first substrate provided with a plurality of light-blocking layers and a plurality of light-transmitting layers, and a second substrate. The light-blocking layers and the light-transmitting layers are alternately provided in contact with one surface of the first substrate and are interposed between the first substrate and the second substrate. The refraction index of each of the light-transmitting layers is different from the refraction index of the first substrate or the refraction index of the second substrate. The parallax barrier panel is stacked with a display panel including a plurality of pairs of a pixel for the right eye and a pixel for the left eye.
摘要:
A memory device in which data can be retained for a long time is provided. The memory device includes a memory element and a transistor which functions as a switching element for controlling supply, storage, and release of electrical charge in the memory element. The transistor includes a second gate electrode for controlling the threshold voltage in addition to a normal gate electrode. Further, the off-state current of the transistor is extremely low because an active layer thereof includes an oxide semiconductor. In the memory device, data is stored not by injection of electrical charge to a floating gate surrounded by an insulating film at high voltage but by control of the amount of electrical charge of the memory element through the transistor whose off-state current is extremely low.