摘要:
An object is to obtain a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range, using a thin film transistor in which an oxide semiconductor layer is used. An analog circuit is formed with the use of a thin film transistor including an oxide semiconductor which has a function as a channel formation layer, has a hydrogen concentration of 5×1019 atoms/cm3 or lower, and substantially functions as an insulator in the state where no electric field is generated. Thus, a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range can be obtained.
摘要:
An object is to obtain a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range, using a thin film transistor in which an oxide semiconductor layer is used. An analog circuit is formed with the use of a thin film transistor including an oxide semiconductor which has a function as a channel formation layer, has a hydrogen concentration of 5×1019 atoms/cm3 or lower, and substantially functions as an insulator in the state where no electric field is generated. Thus, a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range can be obtained.
摘要:
An object is to obtain a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range, using a thin film transistor in which an oxide semiconductor layer is used. An analog circuit is formed with the use of a thin film transistor including an oxide semiconductor which has a function as a channel formation layer, has a hydrogen concentration of 5×1019 atoms/cm3 or lower, and substantially functions as an insulator in the state where no electric field is generated. Thus, a semiconductor device having a high sensitivity in detecting signals and a wide dynamic range can be obtained.
摘要:
A semiconductor device is manufactured through steps in which a photoelectric conversion element and an amplifier circuit are formed over a first substrate with a release layer interposed therebetween, and the photoelectric conversion element and the amplifier circuit are separated from the first substrate. Output characteristics of the amplifier circuit are improved and the semiconductor device with high reliability is obtained. A manufacturing method of such semiconductor device includes steps of forming a metal layer having an opening portion over a substrate, forming an insulating layer over the entire surface of the substrate including the opening portion and the metal layer, forming a photoelectric conversion layer in a region which overlaps with the metal layer and is a layer over the insulating layer, forming an amplifier circuit, which amplifies an output current of the photoelectric conversion element by using a thin film transistor, in the opening portion in the metal layer, forming a protective layer over the photoelectric conversion element and the amplifier circuit, and separating the photoelectric conversion element and the amplifier circuit, together with the insulating layer, from the substrate through laser irradiation to the metal layer.
摘要:
A semiconductor device including a first element including a photodiode and an amplifier circuit which amplifies output current of the photodiode, over a first insulating film; and a second element including a color filter and an overcoat layer over the color filter over a second insulating film is manufactured. The first element and the second element are attached to each other by bonding the first insulating film and the second insulating film with a bonding material. Further, the amplifier circuit is a current mirror circuit including a thin film transistor. Still further, a color film may be used instead of a color filter.
摘要:
A semiconductor device is manufactured through steps in which a photoelectric conversion element and an amplifier circuit are formed over a first substrate with a release layer interposed therebetween, and the photoelectric conversion element and the amplifier circuit are separated from the first substrate. Output characteristics of the amplifier circuit are improved and the semiconductor device with high reliability is obtained. A manufacturing method of such semiconductor device includes steps of forming a metal layer having an opening portion over a substrate, forming an insulating layer over the entire surface of the substrate including the opening portion and the metal layer, forming a photoelectric conversion layer in a region which overlaps with the metal layer and is a layer over the insulating layer, forming an amplifier circuit, which amplifies an output current of the photoelectric conversion element by using a thin film transistor, in the opening portion in the metal layer, forming a protective layer over the photoelectric conversion element and the amplifier circuit, and separating the photoelectric conversion element and the amplifier circuit, together with the insulating layer, from the substrate through laser irradiation to the metal layer.
摘要:
A semiconductor device is manufactured through steps in which a photoelectric conversion element and an amplifier circuit are formed over a first substrate with a release layer interposed therebetween, and the photoelectric conversion element and the amplifier circuit are separated from the first substrate. Output characteristics of the amplifier circuit are improved and the semiconductor device with high reliability is obtained. A manufacturing method of such semiconductor device includes steps of forming a metal layer having an opening portion over a substrate, forming an insulating layer over the entire surface of the substrate including the opening portion and the metal layer, forming a photoelectric conversion layer in a region which overlaps with the metal layer and is a layer over the insulating layer, forming an amplifier circuit, which amplifies an output current of the photoelectric conversion element by using a thin film transistor, in the opening portion in the metal layer, forming a protective layer over the photoelectric conversion element and the amplifier circuit, and separating the photoelectric conversion element and the amplifier circuit, together with the insulating layer, from the substrate through laser irradiation to the metal layer.
摘要:
A semiconductor device is manufactured through steps in which a photoelectric conversion element and an amplifier circuit are formed over a first substrate with a release layer interposed therebetween, and the photoelectric conversion element and the amplifier circuit are separated from the first substrate. Output characteristics of the amplifier circuit are improved and the semiconductor device with high reliability is obtained. A manufacturing method of such semiconductor device includes steps of forming a metal layer having an opening portion over a substrate, forming an insulating layer over the entire surface of the substrate including the opening portion and the metal layer, forming a photoelectric conversion layer in a region which overlaps with the metal layer and is a layer over the insulating layer, forming an amplifier circuit, which amplifies an output current of the photoelectric conversion element by using a thin film transistor, in the opening portion in the metal layer, forming a protective layer over the photoelectric conversion element and the amplifier circuit, and separating the photoelectric conversion element and the amplifier circuit, together with the insulating layer, from the substrate through laser irradiation to the metal layer.
摘要:
The photoelectric conversion device includes a photoelectric conversion circuit for outputting photocurrent generated in a photoelectric conversion element as output voltage subjected to logarithmic compression by a first diode element, a reference voltage generation circuit for outputting reference voltage subjected to logarithmic compression by a second diode element in accordance with the amount of current flowing to a resistor, an arithmetic circuit for outputting an output signal obtained by amplifying a difference between the output voltage output from the photoelectric conversion circuit and the reference voltage output from the reference voltage generation circuit, and an output circuit for outputting current corresponding to the logarithmically-compressed output voltage output from the photoelectric conversion circuit by the output signal.
摘要:
A photodetector includes a photoelectric conversion circuit that generates a first voltage by converting a first current generated in accordance with the illuminance of incident light into log-compressed voltage; a temperature compensation circuit that generates a second voltage by performing temperature compensation for the first voltage and generate a second current by converting the second voltage into current; and a digital signal generation circuit that generates a clock signal having an oscillation frequency depending on the second current, counts pulses of the clock signal for a certain period, and generates a digital signal using the count value for the certain period as data.