摘要:
A highly reliable light-emitting module or light-emitting device is provided. A method for manufacturing a highly reliable light-emitting module is provided. The light-emitting module includes, between a first substrate and a second substrate, a first electrode provided over the first substrate, a second electrode provided over the first electrode with a layer containing a light-emitting organic compound interposed therebetween, and a sacrifice layer formed using a liquid material provided over the second electrode.
摘要:
A highly reliable light-emitting module or light-emitting device is provided. A method for manufacturing a highly reliable light-emitting module is provided. The light-emitting module includes, between a first substrate and a second substrate, a first electrode provided over the first substrate, a second electrode provided over the first electrode with a layer containing a light-emitting organic compound interposed therebetween, and a sacrifice layer formed using a liquid material provided over the second electrode.
摘要:
It is an object of the present invention to provide a method for manufacturing an SOI substrate having an SOI layer that can be used in practical applications with high yield even when a flexible substrate such as a glass substrate or a plastic substrate is used. Further, it is another object of the present invention to provide a method for manufacturing a thin semiconductor device using such an SOI substrate with high yield. When a single-crystal semiconductor substrate is bonded to a flexible substrate having an insulating surface and the single-crystal semiconductor substrate is separated to manufacture an SOI substrate, one or both of bonding surfaces are activated, and then the flexible substrate having an insulating surface and the single-crystal semiconductor substrate are attached to each other.
摘要:
It is an object of the present invention to provide a method for manufacturing an SOI substrate having an SOI layer that can be used in practical applications with high yield even when a flexible substrate such as a glass substrate or a plastic substrate is used. Further, it is another object of the present invention to provide a method for manufacturing a thin semiconductor device using such an SOI substrate with high yield. When a single-crystal semiconductor substrate is bonded to a flexible substrate having an insulating surface and the single-crystal semiconductor substrate is separated to manufacture an SOI substrate, one or both of bonding surfaces are activated, and then the flexible substrate having an insulating surface and the single-crystal semiconductor substrate are attached to each other.
摘要:
It is an object of the present invention to provide a method for manufacturing an SOI substrate having an SOI layer that can be used in practical applications with high yield even when a flexible substrate such as a glass substrate or a plastic substrate is used. Further, it is another object of the present invention to provide a method for manufacturing a thin semiconductor device using such an SOI substrate with high yield. When a single-crystal semiconductor substrate is bonded to a flexible substrate having an insulating surface and the single-crystal semiconductor substrate is separated to manufacture an SOI substrate, one or both of bonding surfaces are activated, and then the flexible substrate having an insulating surface and the single-crystal semiconductor substrate are attached to each other.
摘要:
The present invention provides a manufacturing technique of a semiconductor device and a display device using a peeling process, in which a transfer process can be conducted with a good state in which a shape and property of an element before peeling are kept. Further, the present invention provides a manufacturing technique of more highly reliable semiconductor devices and display devices with high yield without complicating the apparatus and the process for manufacturing. According to the present invention, an organic compound layer including a photocatalyst substance is formed over a first substrate having a light-transmitting property, an element layer is formed over the organic compound layer including a photocatalyst substance, the organic compound layer including a photocatalyst substance is irradiated with light which has passed through the first substrate, and the element layer is peeled from the first substrate.
摘要:
The present invention provides a manufacturing technique of a semiconductor device and a display device using a peeling process, in which a transfer process can be conducted with a good state in which a shape and property of an element before peeling are kept. Further, the present invention provides a manufacturing technique of more highly reliable semiconductor devices and display devices with high yield without complicating the apparatus and the process for manufacturing. According to the present invention, an organic compound layer including a photocatalyst substance is formed over a first substrate having a light-transmitting property, an element layer is formed over the organic compound layer including a photocatalyst substance, the organic compound layer including a photocatalyst substance is irradiated with light which has passed through the first substrate, and the element layer is peeled from the first substrate.
摘要:
The present invention provides a manufacturing technique of a semiconductor device and a display device using a peeling process, in which a transfer process can be conducted with a good state in which a shape and property of an element before peeling are kept. Further, the present invention provides a manufacturing technique of more highly reliable semiconductor devices and display devices with high yield without complicating the apparatus and the process for manufacturing. According to the present invention, an organic compound layer including a photocatalyst substance is formed over a first substrate having a light-transmitting property, an element layer is formed over the organic compound layer including a photocatalyst substance, the organic compound layer including a photocatalyst substance is irradiated with light which has passed through the first substrate, and the element layer is peeled from the first substrate.
摘要:
A thin film transistor includes, as a buffer layer, a semiconductor layer which contains nitrogen and includes crystal regions in an amorphous structure between a gate insulating layer and source and drain regions, at least on the source and drain regions side. As compared to a thin film transistor in which an amorphous semiconductor is included in a channel formation region, on-current of a thin film transistor can be increased. In addition, as compared to a thin film transistor in which a microcrystalline semiconductor is included in a channel formation region, off-current of a thin film transistor can be reduced.
摘要:
In a manufacturing process of a semiconductor device, a manufacturing technique for reducing the number of lithography processes that use a photoresist and simplifying the process is provided, which improves throughput. An etching mask for forming a pattern of a layer to be processed such as a conductive layer or a semiconductor layer is manufactured without using a lithography technique that uses a photoresist. The etching mask is formed of a light absorption layer including a material which absorbs a laser beam. The mask is formed by irradiating the light absorption layer with a laser beam through a photomask and utilizing laser ablation by energy of the laser beam absorbed by the light absorption layer.