Abstract:
A method of forming a semiconductor device by recessing the upper surface of a semiconductor substrate in first and second areas but not a third area, forming a first conductive layer in the three areas, forming a second conductive layer in all three areas, removing the first and second conductive layers from the second area and portions thereof from the first area resulting in pairs of stack structures each with a control gate over a floating gate, forming a third conductive layer in all three areas, forming a protective layer in the first and second areas and then removing the third conductive layer from the third area, then forming blocks of dummy conductive material in the third area, then etching in the first and second areas to form select and HV gates, and then replacing the blocks of dummy conductive material with blocks of metal material.
Abstract:
A method of forming memory cells, high voltage devices and logic devices on fins of a semiconductor substrate's upper surface, and the resulting memory device formed thereby. The memory cells are formed on a pair of the fins, where the floating gate is disposed between the pair of fins, the word line gate wraps around the pair of fins, the control gate is disposed over the floating gate, and the erase gate is disposed over the pair of fins and partially over the floating gate. The high voltage devices include HV gates that wrap around respective fins, and the logic devices include logic gates that are metal and wrap around respective fins.
Abstract:
Numerous embodiments are disclosed of improved architectures for storing and retrieving system data in a non-volatile memory system. Using these embodiments, system data is much less likely to become corrupted due to charge loss, charge redistribution, disturb effects, and other phenomena that have caused corruption in prior art non-volatile memory systems.
Abstract:
A memory device, and method of making the same, that includes a substrate of semiconductor material of a first conductivity type, first and second regions spaced apart in the substrate and having a second conductivity type different than the first conductivity type, with a first channel region in the substrate extending between the first and second regions, a first floating gate disposed over and insulated from a first portion of the first channel region adjacent to the second region, a first coupling gate disposed over and insulated from the first floating gate, a first word line gate disposed over and insulated from a second portion of the first channel region adjacent the first region, and a first erase gate disposed over and insulated from the first word line gate.
Abstract:
A method of forming a semiconductor device by recessing the upper surface of a semiconductor substrate in first and second areas but not a third area, forming a first conductive layer in the first and second areas, forming a second conductive layer in all three areas, removing the first and second conductive layers from the second area and portions thereof from the first area resulting in pairs of stack structures each with a control gate over a floating gate, forming a third conductive layer in the first and second areas, forming a protective layer in the first and second areas and then removing the second conductive layer from the third area, then forming blocks of conductive material in the third area, then etching in the first and second areas to form select and HV gates, and replacing the blocks of conductive material with blocks of metal material.
Abstract:
A method of forming a non-volatile memory cell on a substrate having memory cell and logic circuit regions by forming a pair of conductive floating gates in the memory cell region, forming a first source region in the substrate between the pair of floating gates, forming a polysilicon layer in both regions, forming an oxide layer over the polysilicon layer in the logic circuit region, performing a chemical-mechanical polish of the polysilicon layer in the memory cell area leaving a first block of the polysilicon layer between the floating gates that is separated from remaining portions of the polysilicon layer, and selectively etching portions of the polysilicon layer to result in: second and third blocks of the polysilicon layer disposed in outer regions of the memory cell area, and a fourth block of the polysilicon layer in the logic circuit region.
Abstract:
A twin bit memory cell includes first and second spaced apart floating gates formed in first and second trenches in the upper surface of a semiconductor substrate. An erase gate, or a pair of erase gates, are disposed over and insulated from the floating gates, respectively. A word line gate is disposed over and insulated from a portion of the upper surface that is between the first and second trenches. A first source region is formed in the substrate under the first trench, and a second source region formed in the substrate under the second trench. A continuous channel region of the substrate extends from the first source region, along a side wall of the first trench, along the portion of the upper surface that is between the first and second trenches, along a side wall of the second trench, and to the second source region.
Abstract:
A simplified method for forming pairs of non-volatile memory cells using two polysilicon depositions. A first polysilicon layer is formed on and insulated from the semiconductor substrate in a first polysilicon deposition process. A pair of spaced apart insulation blocks are formed on the first polysilicon layer. Exposed portions of the first poly silicon layer are removed while maintaining a pair of polysilicon blocks of the first polysilicon layer each disposed under one of the pair of insulation blocks. A second polysilicon layer is formed over the substrate and the pair of insulation blocks in a second polysilicon deposition process. Portions of the second polysilicon layer are removed while maintaining a first polysilicon block (disposed between the pair of insulation blocks), a second polysilicon block (disposed adjacent an outer side of one insulation block), and a third polysilicon block (disposed adjacent an outer side of the other insulation block).
Abstract:
A non-volatile memory cell having a split gate, wherein the floating gate and the coupling/control gate have complimentary non-planar shapes. The shape may be a step shape. An array of such cells and a method of manufacturing the cells are also disclosed.
Abstract:
A memory device, and method of making the same, that includes a substrate of semiconductor material of a first conductivity type, first and second regions spaced apart in the substrate and having a second conductivity type different than the first conductivity type, with a first channel region in the substrate extending between the first and second regions, a first floating gate disposed over and insulated from a first portion of the first channel region adjacent to the second region, a first coupling gate disposed over and insulated from the first floating gate, a first word line gate disposed over and insulated from a second portion of the first channel region adjacent the first region, and a first erase gate disposed over and insulated from the first word line gate.