Abstract:
A package substrate is provided, which includes: a body having opposite first and second surfaces, each having adjacent first and second regions defined thereon; first and second circuit layers formed on the first and second surfaces of the body, respectively; a first insulating layer formed on the first surface of the body and having a plurality of first openings formed in the first insulating layer and positioned in the first and second regions; and a second insulating layer formed on the second surface of the body and having a plurality of second openings formed in the second insulating layer and positioned in the second region. Further, at least a third opening is formed in the second insulating layer and positioned in the first region to reduce the volume of the second insulating layer, thereby facilitating even distribution of thermal stresses through the first and second insulating layers during thermal cycling and hence preventing warpage of the package substrate.
Abstract:
A method of eliminating a defective bonding wire is provided, including moving a bonding member from a first region of a carrier to a second region of the carrier if the bonding wire of the bonding member is defective, and cooperatively operating a movement member and the bonding member so as to cause the defective bonding wire to be removed from the bonding member and bonded to the second region of the carrier, thereby auto-debugging the bonding member and improving the production efficiency.
Abstract:
A method of eliminating a defective bonding wire is provided, including moving a bonding member from a first region of a carrier to a second region of the carrier if the bonding wire of the bonding member is defective, and cooperatively operating a movement member and the bonding member so as to cause the defective bonding wire to be removed from the bonding member and bonded to the second region of the carrier, thereby auto-debugging the bonding member and improving the production efficiency.
Abstract:
A method for fabricating an electronic package, including the steps of: providing a substrate having a plurality of electronic elements and a plurality of separation portions formed between the electronic elements, wherein each of the electronic elements has an active surface with a plurality of electrode pads and an inactive surface opposite to the active surface; forming at least an opening in each of the separation portions from a side corresponding to the inactive surfaces of the electronic elements, wherein the at least an opening does not penetrate the separation portion; forming an encapsulant in the opening; and singulating the electronic elements along the opening from a side corresponding to the active surfaces of the electronic elements. As such, each of the electronic elements has a side surface adjacent to and connecting the active and inactive surfaces of the electronic element and the side surface is partially covered by the encapsulant for protection.