Abstract:
An electronic apparatus and a control method are provided that are capable of reducing power consumption. The electronic apparatus having a normal mode in which first electric power is consumed and a power-saving mode in which second electric power lower than the first electric power is consumed includes a first sensor and a second sensor whose power consumption is lower than that of the first sensor. In the power-saving mode, supply of power to the first sensor is restricted, the second sensor is set to the power-saving mode, a trigger for restoring the power-saving mode to the normal mode is detected by using the second sensor set to the power-saving mode, and the power-saving mode is restored to the normal mode based on the detected trigger.
Abstract:
Disclosed herein is a data receiving circuit including a transmitting section configured to transmit an identifying signal used to identify a state of connection of the data receiving circuit, the identifying signal making potential transitions periodically, in an in-phase signal via a transmission path having AC coupling to a data transmitting circuit for transmitting data in a differential signal via the transmission path.
Abstract:
To accurately detect the presence or absence of a signal. A signal detector includes an input-signal amplifying circuit, a reference-signal amplifying circuit, and a comparator. In the signal detector, the input-signal amplifying circuit amplifies an input signal with a predetermined gain. The reference-signal amplifying circuit amplifies a reference signal at a constant signal-level with a gain that substantially matches the predetermined gain. The comparator compares a signal level of the amplified input signal with a signal level of the amplified reference signal, and outputs the comparison result as a detection signal.
Abstract:
An electronic apparatus and a control method are provided that are capable of reducing power consumption. The electronic apparatus having a normal mode in which first electric power is consumed and a power-saving mode in which second electric power lower than the first electric power is consumed includes a first sensor and a second sensor whose power consumption is lower than that of the first sensor. In the power-saving mode, supply of power to the first sensor is restricted, the second sensor is set to the power-saving mode, a trigger for restoring the power-saving mode to the normal mode is detected by using the second sensor set to the power-saving mode, and the power-saving mode is restored to the normal mode based on the detected trigger.
Abstract:
An electronic apparatus and a control method are provided that are capable of reducing power consumption. The electronic apparatus having a normal mode in which first electric power is consumed and a power-saving mode in which second electric power lower than the first electric power is consumed includes a first sensor and a second sensor whose power consumption is lower than that of the first sensor. In the power-saving mode, supply of power to the first sensor is restricted, the second sensor is set to the power-saving mode, a trigger for restoring the power-saving mode to the normal mode is detected by using the second sensor set to the power-saving mode, and the power-saving mode is restored to the normal mode based on the detected trigger.
Abstract:
A clock and data recovery circuit includes: a first current source configured to supply a charge current through a first signal line; a second current source configured to supply a discharge current through a second signal line; a loop filter configured to convert the charge current into a first voltage signal and output the first voltage signal through a third signal line, and to convert the discharge current into a second voltage signal and output the second voltage signal through a fourth signal line; a voltage control oscillator configured to be controlled in frequency; and a phase detector configured to receive a data signal from outside and receive a clock signal from the voltage control oscillator, and to supply a control signal to each of the first current source and the second current source, and generate a recovery clock signal and a recovery data signal.
Abstract:
An electronic apparatus and a control method are provided that are capable of reducing power consumption. The electronic apparatus having a normal mode in which first electric power is consumed and a power-saving mode in which second electric power lower than the first electric power is consumed includes a first sensor and a second sensor whose power consumption is lower than that of the first sensor. In the power-saving mode, supply of power to the first sensor is restricted, the second sensor is set to the power-saving mode, a trigger for restoring the power-saving mode to the normal mode is detected by using the second sensor set to the power-saving mode, and the power-saving mode is restored to the normal mode based on the detected trigger.
Abstract:
An electronic apparatus and a control method are provided that are capable of reducing power consumption. The electronic apparatus having a normal mode in which first electric power is consumed and a power-saving mode in which second electric power lower than the first electric power is consumed includes a first sensor and a second sensor whose power consumption is lower than that of the first sensor. In the power-saving mode, supply of power to the first sensor is restricted, the second sensor is set to the power-saving mode, a trigger for restoring the power-saving mode to the normal mode is detected by using the second sensor set to the power-saving mode, and the power-saving mode is restored to the normal mode based on the detected trigger.
Abstract:
There is provided a reception unit, including: a transition detection section configured to detect a transition of an input data signal; an oscillation section configured to generate a clock signal and vary a phase of the clock signal based on a result of detection made by the transition detection section, the clock signal having a frequency in accordance with a first control signal; a first sampling section configured to sample the input data signal based on the clock signal and thereby generate an output data signal; and a control section configured to generate the first control signal based on the input data signal, the output data signal, and the clock signal.
Abstract:
Disclosed herein is a data receiving circuit including a transmitting section configured to transmit an identifying signal used to identify a state of connection of the data receiving circuit, the identifying signal making potential transitions periodically, in an in-phase signal via a transmission path having AC coupling to a data transmitting circuit for transmitting data in a differential signal via the transmission path.