摘要:
A hybrid fuel cell including at least one cathode, at least one anode, and at least one oxygen evolution electrode. The oxygen evolution electrode works in combination with the anode to produce hydrogen and/or oxygen as an electrolyzer while the anode and cathode work in combination to provide an electrical current as a fuel cell. The cathode and the oxygen evolution electrode may operate alone or in tandem during operation of the hybrid fuel cell.
摘要:
A vehicle drive system powered by a hybrid fuel cell including at least one cathode, at least one anode, and at least one auxiliary electrode. The auxiliary electrode works in combination with the anode to provide a current as a rechargeable battery while the anode and cathode work in combination to provide an electrical current as a fuel cell. The cathode and the auxiliary electrode may operate alone or in tandem to provide an electrical current.
摘要:
A hybrid fuel cell/battery including one or more electrochemical cell units comprising at least one cathode, at least one anode, and at least one auxiliary electrode. The auxiliary electrode works in combination with the anode to provide a current as a rechargeable battery while the anode and cathode work in combination to provide an electrical current as a fuel cell. The cathode and the auxiliary electrode may operate alone or in tandem to provide an electrical current.
摘要:
A hybrid fuel cell/battery including at least one cathode, at least one anode, and at least one auxiliary electrode. The auxiliary electrode works in combination with the anode to provide a current as a rechargeable battery while the anode and cathode work in combination to provide an electrical current as a fuel cell. The cathode and the auxiliary electrode may operate alone or in tandem to provide an electrical current.
摘要:
A fuel cell utilizing parallel flow of a hydrogen stream, an oxygen stream, and an electrolyte solution with respect to the electrodes, while maintaining mechanical support within the fuel cell. The fuel cell utilizes encapsulated electrodes to maintain a high air flow rate and low pressure throughout the fuel cell. The fuel cell is also designed to maintain mechanical support within the fuel cell while the electrodes expand and contract in response to the absorption of oxygen and hydrogen. Gas is predistributed by the compression plates and electrode plates to supply the electrodes with high concentrations of oxygen from air.
摘要:
A hybrid fuel cell/battery including one or more electrochemical cell units comprising at least one cathode, at least one anode, and at least one auxiliary electrode. The auxiliary electrode works in combination with the anode to provide a current as a rechargeable battery while the anode and cathode work in combination to provide an electrical current as a fuel cell. The cathode and the auxiliary electrode may operate alone or in tandem to provide an electrical current.
摘要:
A hybrid fuel cell/battery including at least one cathode, at least one anode, and at least one auxiliary electrode. The auxiliary electrode works in combination with the anode to provide a current as a rechargeable battery while the anode and cathode work in combination to provide an electrical current as a fuel cell. The cathode and the auxiliary electrode may operate alone or in tandem to provide an electrical current.
摘要:
A vehicle drive system powered by a hybrid fuel cell including at least one cathode, at least one anode, and at least one auxiliary electrode. The auxiliary electrode works in combination with the anode to provide a current as a rechargeable battery while the anode and cathode work in combination to provide an electrical current as a fuel cell. The cathode and the auxiliary electrode may operate alone or in tandem to provide an electrical current.
摘要:
The present invention discloses a fuel cell, which incorporates a bipolar plate. The regenerative bipolar fuel cell of the present invention contains at least one hydrogen electrode in contact with a hydrogen stream and at least one oxygen electrode in contact with an oxygen stream. At least one electrolyte chamber is in contact with the hydrogen electrode and at least one electrolyte chamber is in contact with the oxygen electrode. The electrolyte chambers provide mechanical support within the fuel cell and provide an uninterrupted pathway for an electrolyte solution to contact the hydrogen electrode and the oxygen electrode, respectively. At least one bipolar plate is positioned between the hydrogen electrode and the oxygen electrode. The bipolar plate has a hydrogen side in contact with the hydrogen electrode and an oxygen side in contact with the oxygen electrode. The bipolar plate eliminates the need for electrode support frames within a fuel cell and provides an entire electrode in one epoxy frame that ensures the integrity of the different pieces while maintaining the different fluids to be available at the points of their respective reactions. In addition, the bipolar plate acts as a manifold for gas distribution and a gasket for sealing.
摘要:
The present invention discloses a process and apparatus for removing sodium and chloride ions from an aqueous sodium chloride solution, such as seawater or brine. The process includes electrolyzing aqueous sodium chloride to remove chloride and sodium ions in the form of chlorine gas and sodium metal. Preferably, a photovoltaic device, such as a triple junction amorphous silicon solar cell, provides the electrical energy for the electrolysis. The process utilizes electrode material that facilitates the production of chlorine gas and inhibits the evolution of hydrogen from the aqueous sodium chloride solution. The sodium is deposited onto a metal surface having a high hydrogen overpotential to produce sodium amalgam. The processed solution from the electrolysis has a reduced sodium chloride content and may be further processed to produce fresh water for human consumption or agricultural purposes. The sodium amalgam is removed from the aqueous sodium chloride solution and transported to and coupled against an air depolarizing fuel cell in water to produce electrical power with the sodium air fuel cell, power that may be used to operate the apparatus or other machinery. The product of the reaction between the sodium amalgam and the fuel cell is sodium hydroxide that may be reacted with the chlorine gas to produce sodium hypochlorite.