Abstract:
Components and systems for energy storage and conversion devices are disclosed. An exemplary system may include a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode for providing ionic transport. The system may also include a hydrophobic portion on the separator. The hydrophobic portion may comprise hydrophobic pathways formed on the surface of the separator. The system may also include a hydrophilic portion on the separator. Another exemplary system may include an absorptive glass mat separator having a hydrophobic portion and a textured PVC separator. An exemplary method may include manufacturing the separator and applying a hydrophobic portion on the separator. The method may also include applying a hydrophilic portion to the separator.
Abstract:
A conductive additive for the positive nickel electrode for electrochemical cells which provides increased performance by suppressing an oxygen evolution reaction occurring parallel to the oxidation of nickel hydroxide, increasing conductivity of the electrode and/or consuming oxygen produced as a result of the oxygen evolution reaction.
Abstract:
Fuel cell oxygen electrode and instant startup fuel cells employing such oxygen electrode. The oxygen electrode operates through the mechanism of redox couples which uniquely provide multiple degrees of freedom in selecting the operating voltages available for such fuel cells. Such oxygen electrodes provide the fuel cells in which they are used a “buffer” or “charge” of oxidizer available within the oxygen electrode at all times.
Abstract:
A method for the production and storage of hydrogen. The hydrogen is produced via electrolysis and as the hydrogen is formed it is absorbed into a hydrogen storing cathode. Once the hydrogen storing cathode has become completely hydrided, it is shipped to end users as a metal hydride supply of hydrogen.
Abstract:
A fuel cell utilizing parallel flow of a hydrogen stream, an oxygen stream, and an electrolyte solution with respect to the electrodes, while maintaining mechanical support within the fuel cell. The fuel cell contains multiple layers of electrodes which absorb and react hydrogen and oxygen. The fuel cell is designed to maintain mechanical support within the fuel cell while the electrodes expand and contract in response to the absorption of oxygen and hydrogen. The design of the fuel cell provides a substantially more compact design by not requiring space to allow for the expansion and contraction of the electrodes within the fuel cell.
Abstract:
An active material mixture for use in a paste for fabricating positive electrodes, comprising a nickel hydroxide material, and an additive material comprising at least one material selected from the group consisting of a rare earth mineral, and a rare earth concentrate. A nickel positive electrode and an alkaline electrochemical cell using this active material mixture.
Abstract:
The present disclosure includes a lead-acid battery having higher specific power and specific energy than prior known lead-acid batteries. A lead-acid electrochemical storage device is provided, comprising a specific power of between about 650 and about 3,050 Watts/kilogram; and a specific energy of between about 10 and about 80 Watt-hours/kilogram. In some embodiments, the device has a cycle life of greater than 150 cycles and is adapted for use in a vehicle application. The application comprises stop/start or the partial or complete electrification of the vehicle propulsion system. The device may have a bipolar or pseudo-bipolar design, multiple cells disposed within a common casing, and the cells are connected ionically within each cell and electronically between cells.
Abstract:
Mechanically and thermally improved rechargeable batteries, modules and fluid-cooled battery pack systems. The battery is prismatic in shape with an optimized thickness to width to height aspect ratio which provides the battery with balanced optimal properties when compared with prismatic batteries lacking this optimized aspect ratio. The fluid-cooled battery pack includes; 1) a battery-pack case having coolant inlet and outlet; 2) battery modules within the case such that the battery module is spaced from the case walls and from other battery modules to form coolant flow channels along at least one surface of the bundled batteries; and 3) at least one coolant transport means. The width of the coolant flow channels allows for maximum heat transfer.
Abstract:
A method and system for electrochemically purifying an impure stream of hydrogen. Hydrogen is absorbed into a gas diffusion anode from the impure hydrogen stream and oxidized to form hydrogen ions and electrons which are released into an alkaline solution. An electrolytic cathode also positioned in the alkaline solution decomposes water to form hydrogen and hydroxyl ions which combine with the hydrogen ions to maintain equilibrium of the system.
Abstract:
A fuel cell utilizing parallel flow of a hydrogen stream, an oxygen stream, and an electrolyte solution with respect to the electrodes, while maintaining mechanical support within the fuel cell. The fuel cell utilizes encapsulated electrodes to maintain a high air flow rate and low pressure throughout the fuel cell. The fuel cell is also designed to maintain mechanical support within the fuel cell while the electrodes expand and contract in response to the absorption of oxygen and hydrogen. Gas is predistributed by the compression plates and electrode plates to supply the electrodes with high concentrations of oxygen from air.