Abstract:
For the purpose of transferring a tube in a tube filling machine between a staging location and a set-down location, the tube at the staging location is gripped at its lateral surface by a holding device and transported by a transfer device to the set-down location where it is set down while simultaneously being rotated about its longitudinal axis or about an axis parallel thereto during transport. Such a transfer device has a multiple-member articulated arm, which has at least one 1st arm member that is mounted to pivot about a rotary axis and directly or indirectly pivotably supports at least one holding member. The holding member carries at least one holding device by means of which the tube can be picked up and which can be pivoted about an axis that is parallel to the longitudinal axis of the tube or that coincides therewith.
Abstract:
For the purpose of transferring a tube in a tube filling machine between a staging location and a set-down location, the tube at the staging location is gripped at its lateral surface by a holding device and transported by a transfer device to the set-down location where it is set down while simultaneously being rotated about its longitudinal axis or about an axis parallel thereto during transport. Such a transfer device has a multiple-member articulated arm, which has at least one 1st arm member that is mounted to pivot about a rotary axis and directly or indirectly pivotably supports at least one holding member. The holding member carries at least one holding device by means of which the tube can be picked up and which can be pivoted about an axis that is parallel to the longitudinal axis of the tube or that coincides therewith.
Abstract:
The invention relates to a method for producing urethanes or ureas or mixtures of urethanes and ureas by oxidative carbonylation of organic amines in the presence of carbon monoxide, oxygen and a catalyst, where the catalyst used is a transition metal complex containing the structural feature: [Mn+(O˜N˜O)2−](n−2)+(L)m(Z−)n−2 and the method is carried out under halogen-free reaction conditions. The invention further relates to transition metal complexes containing said structural feature and also to the use of such transition metal complexes as catalysts in the production of urethanes or ureas or mixtures of urethanes and ureas.
Abstract:
The present invention pertains to a catalyst for the synthesis of organic alkyl carbamates, the method for preparing the same and the use thereof. The catalyst comprises a catalytically active component and a catalyst support, and the catalytically active component being carried by the catalyst support, wherein the catalytically active component comprises a transition metal oxide, and the general formula of the transition metal oxide is EOx, wherein E is selected from transition metal element and x is in the range of 0.5-4.
Abstract:
Control system for a microscope with a sensor unit, an evaluating unit and at least one drive unit, the sensor unit having at least one movement sensor, is fixed to the microscope and is aligned with the head of the microscope of the user for detecting head movements of the latter. The evaluating unit is constructed for calculating the data received by the sensor unit and for transmitting a control signal to the at least one drive unit, and the at least one drive unit is constructed for driving means set up for adjusting at least one physical characteristic of the microscope.
Abstract:
Control system for a microscope with a sensor unit, an evaluating unit and at least one drive unit, the sensor unit having at least one movement sensor, is fixed to the microscope and is aligned with the head of the microscope of the user for detecting head movements of the latter. The evaluating unit is constructed for calculating the data received by the sensor unit and for transmitting a control signal to the at least one drive unit, and the at least one drive unit is constructed for driving means set up for adjusting at least one physical characteristic of the microscope.
Abstract:
The invention relates to a method for removing anhydrous acids and hydrohalogens from trichlorosilane by contacting the trichlorosilane with solid bases. The invention further relates to the use of the trichlorosilane so purified in the production of silane and/or super-pure silicon.
Abstract:
The present invention pertains to a novel method for preparing a carbamate, in which the method comprises reacting an aliphatic substituted urea and/or its derivatives, with a hydroxyl group containing compound to obtain a carbamate. In addition, the present invention provides a novel catalyst which is suitable for catalyzing the reaction to form a carbamate, and a method for preparing the novel catalyst. The method of the present invention for preparing a carbamate does not involve the application of carbon monoxide which is toxic, and the reaction conditions are relatively mild with high catalytic activity, high reaction selectivity of the catalyst, and a relatively short reaction time. Furthermore, the catalyst is separated from the reaction system and reused easily, which will facilitates scale up and industrial application.
Abstract:
The present invention relates to a catalyst for the synthesis of organic carbonates, the preparation of the catalyst and the application of this catalyst in the synthesis of organic carbonates from reacting urea and hydroxyl group containing compounds. The catalyst provided in this invention is a calcinate of hydrous salt containing rare earth element at a moderate calcining temperature.
Abstract:
The present invention pertains to a catalyst for the synthesis of organic alkyl carbamates, the method for preparing the same and the use thereof. The catalyst comprises a catalytically active component and a catalyst support, and the catalytically active component being carried by the catalyst support, wherein the catalytically active component comprises a transition metal oxide, and the general formula of the transition metal oxide is EOx, wherein E is selected from transition metal element and x is in the range of 0.5-4.