摘要:
A semiconductor device and method for fabricating a semiconductor device include providing a strained semiconductor layer having a first strained axis, forming an active region within a surface of the strained semiconductor layer where the active region has a longitudinal axis along the strained axis and forming gate structures over the active region. Raised source/drain regions are formed on the active regions above and over the surface of the strained semiconductor layer and adjacent to the gate structures to form transistor devices.
摘要:
A semiconductor device and method for fabricating a semiconductor device include providing a strained semiconductor layer having a first strained axis, forming an active region within a surface of the strained semiconductor layer where the active region has a longitudinal axis along the strained axis and forming gate structures over the active region. Raised source/drain regions are formed on the active regions above and over the surface of the strained semiconductor layer and adjacent to the gate structures to form transistor devices.
摘要:
A semiconductor device and method for fabricating a semiconductor device include providing a strained semiconductor layer having a first strained axis, forming an active region within a surface of the strained semiconductor layer where the active region has a longitudinal axis along the strained axis and forming gate structures over the active region. Raised source/drain regions are formed on the active regions above and over the surface of the strained semiconductor layer and adjacent to the gate structures to form transistor devices.
摘要:
A method of fabricating a semiconductor device that may begin with providing a semiconductor substrate including a first device region including a silicon layer in direct contact with a buried dielectric layer, a second device region including a silicon germanium layer in direct contact with the buried dielectric layer, and a third device region with a silicon doped with carbon layer. At least one low power semiconductor device may then be formed on the silicon layer within the first device region of the semiconductor substrate. At least one p-type semiconductor device may be formed on the silicon germanium layer of the second device region of the semiconductor substrate. At least one n-type semiconductor device may be formed on the silicon doped with carbon layer of the third device region of the semiconductor substrate.
摘要:
A method of fabricating a semiconductor device that may begin with providing a semiconductor substrate including a first device region including a silicon layer in direct contact with a buried dielectric layer, a second device region including a silicon germanium layer in direct contact with the buried dielectric layer, and a third device region with a silicon doped with carbon layer. At least one low power semiconductor device may then be formed on the silicon layer within the first device region of the semiconductor substrate. At least one p-type semiconductor device may be formed on the silicon germanium layer of the second device region of the semiconductor substrate. At least one n-type semiconductor device may be formed on the silicon doped with carbon layer of the third device region of the semiconductor substrate.
摘要:
A method of fabricating a semiconductor device that may begin with providing a semiconductor substrate including a first device region including a silicon layer in direct contact with a buried dielectric layer, a second device region including a silicon germanium layer in direct contact with the buried dielectric layer, and a third device region with a silicon doped with carbon layer. At least one low power semiconductor device may then be formed on the silicon layer within the first device region of the semiconductor substrate. At least one p-type semiconductor device may be formed on the silicon germanium layer of the second device region of the semiconductor substrate. At least one n-type semiconductor device may be formed on the silicon doped with carbon layer of the third device region of the semiconductor substrate.
摘要:
A semiconductor device and fabrication method include a strained semiconductor layer having a strain in one axis. A long fin and a short fin are formed in the semiconductor layer such that the long fin has a strained length along the one axis. An n-type transistor is formed on the long fin, and a p-type transistor is formed on the at least one short fin. The strain in the n-type transistor improves performance.
摘要:
A semiconductor device and fabrication method include a strained semiconductor layer having a strain in one axis. A long fin and a short fin are formed in the semiconductor layer such that the long fin has a strained length along the one axis. An n-type transistor is formed on the long fin, and a p-type transistor is formed on the at least one short fin. The strain in the n-type transistor improves performance.
摘要:
A method and structure are disclosed for a defect free Si:C source/drain in an NFET device. A wafer is accepted with a primary surface of {100} crystallographic orientation. A recess is formed in the wafer in such manner that the bottom surface and the four sidewall surfaces of the recess are all having {100} crystallographic orientations. A Si:C material is eptaxially grown in the recess, and due to the crystallographic orientations the defect density next to each of the four sidewall surfaces is essentially the same as next to the bottom surface. The epitaxially filled recess is used in the source/drain fabrication of an NFET device. The NFET device is oriented along the crystallographic direction, and has the device channel under a tensile strain due to the defect free Si:C in the source/drain.
摘要:
A method for fabricating field effect transistors patterns a strained silicon layer formed on a dielectric layer of a substrate into at least one NFET region including at least a first portion of the strained silicon layer. The strained silicon layer is further patterned into at least one PFET region including at least a second portion of the strained silicon layer. A masking layer is formed over the first portion of the strained silicon layer. After the masking layer has been formed, the second strained silicon layer is transformed into a relaxed silicon layer. The relaxed silicon layer is transformed into a strained silicon germanium layer.