摘要:
An isolated epitaxial modulation device comprises a substrate; a barrier structure formed on the substrate; an isolated epitaxial region formed above the substrate and electrically isolated from the substrate by the barrier structure; a semiconductor device, the semiconductor device located in the isolated epitaxial region; and a modulation network formed on the substrate and electrically coupled to the semiconductor device. The device also comprises a bond pad and a ground pad. The isolated epitaxial region is electrically coupled to at least one of the bond pad and the ground pad. The semiconductor device and the epitaxial modulation network are configured to modulate an input voltage.
摘要:
A semiconductor structure and a method for forming the same. The method includes providing a semiconductor structure. The semiconductor structure includes a semiconductor substrate. The method further includes simultaneously forming a first doped transistor region of a first transistor and a first doped guard-ring region of a guard ring on the semiconductor substrate. The first doped transistor region and the first doped guard-ring region comprise dopants of a first doping polarity. The method further includes simultaneously forming a second doped transistor region of the first transistor and a second doped guard-ring region of the guard ring on the semiconductor substrate. The second doped transistor region and the second doped guard-ring region comprise dopants of the first doping polarity. The second doped guard-ring region is in direct physical contact with the first doped guard-ring region. The guard ring forms a closed loop around the first and second doped transistor regions.
摘要:
A semiconductor structure and a method for operating the same. The method includes providing a semiconductor structure. The semiconductor structure includes first, second, third, and fourth doped semiconductor regions. The second doped semiconductor region is in direct physical contact with the first and third doped semiconductor regions. The fourth doped semiconductor region is in direct physical contact with the third doped semiconductor region. The first and second doped semiconductor regions are doped with a first doping polarity. The third and fourth doped semiconductor regions are doped with a second doping polarity. The method further includes (i) electrically coupling the first and fourth doped semiconductor regions to a first node and a second node of the semiconductor structure, respectively, and (ii) electrically charging the first and second nodes to first and second electric potentials, respectively. The first electric potential is different from the second electric potential.
摘要:
A semiconductor structure and a method forming the same. The method includes providing a semiconductor structure which includes a semiconductor substrate. The semiconductor substrate includes a top substrate surface which defines a reference direction perpendicular to the top substrate surface. The method further includes simultaneously forming a first doped transistor region of a first transistor and a first doped Source/Drain portion of a second transistor on the semiconductor substrate. The first doped transistor region is not a portion of a Source/Drain region of the first transistor. The first doped transistor region and the first doped Source/Drain portion comprise dopants of a first doping polarity. The method further includes forming a second gate dielectric layer and a second gate electrode region of the second transistor on the semiconductor substrate. The second gate dielectric layer is sandwiched between and electrically insulates the second gate electrode region and the semiconductor substrate.
摘要:
A method and apparatus for analyzing an integrated circuit design for pnpn structures which are likely to latchup or cause injection of noise into the substrate. Once qualifying pnpn structures are identified, the method and apparatus automatically inserts a noise and latchup suppression circuit of the designers' choice into the pnpn structure to eliminate the latchup and/or noise concerns.
摘要:
An integrated circuit having either or both ESD and noise suppression devices that use the inherent resistance in the substrate as an ESD trigger and/or part of the noise suppression.
摘要:
A magneto-resistive read head having a “parasitic shield” provides an alternative path for currents associated with sparkovers, thus preventing such currents from damaging the read head. The parasitic shield is provided in close proximity to a conventional magnetic shield. The electrical potential of parasitic shield is held essentially equal to the electrical potential of the sensor element. If charges accumulate on the conventional shield, current will flow to the parasitic shield at a lower potential than would be required for current to flow between the conventional shield and the sensor element. Alternatively, conductive spark gap devices are electrically coupled to sensor element leads and to each magnetic shield. Each spark gap device is brought within very close proximity of the substrate to provide an alternative path for charge that builds up between the sensor element and the substrate to be discharged. The ends of the spark gaps that are brought into close proximity of the substrate are preferably configured with high electric field density inducing structures which reduce the voltage required to cause a sparkover between the spark gap device and the substrate.
摘要:
A magneto-resistive read head having a "parasitic shield" provides an alternative path for currents associated with sparkovers, thus preventing such currents from damaging the read head. The parasitic shield is provided in close proximity to a conventional magnetic shield. The electrical potential of parasitic shield is held essentially equal to the electrical potential of the sensor element. If charges accumulate on the conventional shield, current will flow to the parasitic shield at a lower potential than would be required for current to flow between the conventional shield and the sensor element. Alternatively, conductive spark gap devices are electrically coupled to sensor element leads and to each magnetic shield. Each spark gap device is brought within very close proximity of the substrate to provide an alternative path for charge that builds up between the sensor element and the substrate to be discharged. The ends of the spark gaps that are brought into close proximity of the substrate are preferably configured with high electric field density inducing structures which reduce the voltage required to cause a sparkover between the spark gap device and the substrate.
摘要:
An enhanced electrostatic discharge suppression circuit is disclosed for protecting integrated circuit chips from electrostatic discharges or other potentially damaging voltage transients on an input/output pad. The suppression circuit includes a discharge circuit, electrically coupled to the input/output pad, having a diode comprising a diffusion in a substrate well formed in a substrate. The diffusion is connected to the input/output pad of the integrated circuit. A capacitor is locally provided to couple the substrate well to the substrate. The capacitor is sized to maintain the diode in a forward-bias mode during the electrostatic discharge event, thereby facilitating dissipating of the electrostatic discharge. The capacitor comprises a trench capacitor, which depending upon the configuration, may function as a guard ring for the discharge circuit. Certain beneficial parasitic effects are also discussed in association with integration of a trench capacitor into the suppression circuit.
摘要:
A structure and method of fabricating the structure. The structure including: a dielectric isolation in a semiconductor substrate, the dielectric isolation extending in a direction perpendicular to a top surface of the substrate into the substrate a first distance, the dielectric isolation surrounding a first region and a second region of the substrate, a top surface of the dielectric isolation coplanar with the top surface of the substrate; a dielectric region in the second region of the substrate; the dielectric region extending in the perpendicular direction into the substrate a second distance, the first distance greater than the second distance; and a first device in the first region and a second device in the second region, the first device different from the second device, the dielectric region isolating a first element of the second device from a second element of the second device.