Shallow trench isolation structure for strained Si on SiGe
    1.
    发明授权
    Shallow trench isolation structure for strained Si on SiGe 失效
    SiGe上的应变Si的浅沟槽隔离结构

    公开(公告)号:US07183175B2

    公开(公告)日:2007-02-27

    申请号:US11172707

    申请日:2005-07-01

    IPC分类号: H01L21/762

    摘要: A structure, and a method for fabricating the structure, for the isolation of electronic devices is disclosed. The electronic devices are processed in substrates comprising a SiGe based layer underneath a strained Si layer. The isolation structure comprises a trench extending downward from the substrate top surface and penetrating into the SiGe based layer, forming a sidewall in the substrate. An epitaxial Si liner is selectively deposited onto the trench sidewall, and subsequently thermally oxidized. The trench is filled with a trench dielectric, which protrudes above the substrate top surface.

    摘要翻译: 公开了用于隔离电子设备的结构和用于制造该结构的方法。 电子器件在包括在应变Si层下面的基于SiGe的层的衬底中被处理。 隔离结构包括从衬底顶表面向下延伸并且穿透到基于SiGe的层中的沟槽,在衬底中形成侧壁。 外延Si衬垫选择性地沉积在沟槽侧壁上,随后被热氧化。 沟槽填充有沟槽电介质,其在衬底顶表面上方突出。

    Low temperature Bi-CMOS compatible process for MEMS RF resonators and filters
    2.
    发明授权
    Low temperature Bi-CMOS compatible process for MEMS RF resonators and filters 失效
    用于MEMS RF谐振器和滤波器的低温Bi-CMOS兼容工艺

    公开(公告)号:US07943412B2

    公开(公告)日:2011-05-17

    申请号:US10316254

    申请日:2002-12-10

    IPC分类号: H01L21/00

    摘要: A method of formation of a microelectromechanical system (MEMS) resonator or filter which is compatible with integration with any analog, digital, or mixed-signal integrated circuit (IC) process, after or concurrently with the formation of the metal interconnect layers in those processes, by virtue of its materials of composition, processing steps, and temperature of fabrication is presented. The MEMS resonator or filter incorporates a lower metal level, which forms the electrodes of the MEMS resonator or filter, that may be shared with any or none of the existing metal interconnect levels on the IC. It further incorporates a resonating member that is comprised of at least one metal layer for electrical connection and electrostatic actuation, and at least one dielectric layer for structural purposes. The gap between the electrodes and the resonating member is created by the deposition and subsequent removal of a sacrificial layer comprised of a carbon-based material. The method of removal of the sacrificial material is by an oxygen plasma or an anneal in an oxygen containing ambient. A method of vacuum encapsulation of the MEMS resonator or filter is provided through means of a cavity containing the MEMS device, filled with additional sacrificial material, and sealed. Access vias are created through the membrane sealing the cavity; the sacrificial material is removed as stated previously, and the vias are re-sealed in a vacuum coating process.

    摘要翻译: 一种形成微机电系统(MEMS)谐振器或滤波器的方法,其与在任何模拟,数字或混合信号集成电路(IC)工艺中的集成兼容,或者与这些工艺中的金属互连层的形成同时 ,由于其组成材料,加工步骤和制造温度。 MEMS谐振器或滤波器包含形成MEMS谐振器或滤波器的电极的较低金属电平,其可与IC上的现有金属互连电平中的任何一个或任何一个共享。 它还包括谐振元件,该谐振元件由用于电连接和静电驱动的至少一个金属层和至少一个用于结构目的的电介质层组成。 通过沉积并随后去除由碳基材料构成的牺牲层来产生电极和谐振构件之间的间隙。 去除牺牲材料的方法是通过氧等离子体或在含氧环境中的退火。 MEMS谐振器或滤波器的真空封装方法是通过一个包含MEMS器件的空腔的装置提供的,其中填充有额外的牺牲材料并被密封。 通过隔膜密封腔形成通孔; 如先前所述去除牺牲材料,并且在真空涂覆工艺中重新密封通孔。

    Low temperature bi-CMOS compatible process for MEMS RF resonators and filters
    6.
    发明申请
    Low temperature bi-CMOS compatible process for MEMS RF resonators and filters 失效
    用于MEMS RF谐振器和滤波器的低温双CMOS兼容工艺

    公开(公告)号:US20090108381A1

    公开(公告)日:2009-04-30

    申请号:US10316254

    申请日:2002-12-10

    IPC分类号: H03H9/24 H01L23/28 H01L21/56

    摘要: A method of formation of a microelectromechanical system (MEMS) resonator or filter which is compatible with integration with any analog, digital, or mixed-signal integrated circuit (IC) process, after or concurrently with the formation of the metal interconnect layers in those processes, by virtue of its materials of composition, processing steps, and temperature of fabrication is presented. The MEMS resonator or filter incorporates a lower metal level, which forms the electrodes of the MEMS resonator or filter, that may be shared with any or none of the existing metal interconnect levels on the IC. It further incorporates a resonating member that is comprised of at least one metal layer for electrical connection and electrostatic actuation, and at least one dielectric layer for structural purposes. The gap between the electrodes and the resonating member is created by the deposition and subsequent removal of a sacrificial layer comprised of a carbon-based material. The method of removal of the sacrificial material is by an oxygen plasma or an anneal in an oxygen containing ambient. A method of vacuum encapsulation of the MEMS resonator or filter is provided through means of a cavity containing the MEMS device, filled with additional sacrificial material, and sealed. Access vias are created through the membrane sealing the cavity; the sacrificial material is removed as stated previously, and the vias are re-sealed in a vacuum coating process.

    摘要翻译: 一种形成微机电系统(MEMS)谐振器或滤波器的方法,其与在任何模拟,数字或混合信号集成电路(IC)工艺中的集成兼容,或者与这些工艺中的金属互连层的形成同时 ,由于其组成材料,加工步骤和制造温度。 MEMS谐振器或滤波器包含形成MEMS谐振器或滤波器的电极的较低金属电平,其可与IC上的现有金属互连电平中的任何一个或任何一个共享。 它还包括谐振元件,该谐振元件由用于电连接和静电驱动的至少一个金属层和至少一个用于结构目的的电介质层组成。 通过沉积并随后去除由碳基材料构成的牺牲层来产生电极和谐振构件之间的间隙。 去除牺牲材料的方法是通过氧等离子体或在含氧环境中的退火。 MEMS谐振器或滤波器的真空封装方法是通过一个包含MEMS器件的空腔的装置提供的,其中填充有额外的牺牲材料并被密封。 通过隔膜密封腔形成通孔; 如先前所述去除牺牲材料,并且在真空涂覆工艺中重新密封通孔。