Robotic device for substrate transfer applications
    1.
    发明授权
    Robotic device for substrate transfer applications 有权
    用于衬底转移应用的机器人装置

    公开(公告)号:US08936293B2

    公开(公告)日:2015-01-20

    申请号:US13333688

    申请日:2011-12-21

    IPC分类号: B66F19/00

    CPC分类号: H01L21/67742 H01L21/68707

    摘要: A device for use in the semiconductor industry includes a robotic arm whose end effector includes electromagnetic means to hold a substrate carrier. A pushing member can move independently of a flat, spatula-like portion of the device and is configured to exert force against the substrate carrier while the spatula-like portion is retracted from the substrate carrier, after the substrate carrier has been brought to its intended position. In this manner, the position of the substrate carrier is maintained at its intended position as the spatula-like portion is retracted.

    摘要翻译: 用于半导体工业的器件包括机器人臂,其末端执行器包括用于保持衬底载体的电磁装置。 推动构件可以独立于装置的平坦的刮铲状部分移动,并且构造成在基板载体已经达到其预期之后,当刮板状部分从基板载体缩回时,向基板载体施加力 位置。 以这种方式,当刮刀状部分缩回时,基板载体的位置保持在其预定位置。

    Antiferromagnetically exchange-coupled structure for magnetic tunnel junction device
    3.
    发明授权
    Antiferromagnetically exchange-coupled structure for magnetic tunnel junction device 有权
    用于磁性隧道结装置的反铁磁交换耦合结构

    公开(公告)号:US06326637B1

    公开(公告)日:2001-12-04

    申请号:US09420213

    申请日:1999-10-18

    IPC分类号: H01L2906

    摘要: An antiferromagnetically exchange-coupled structure for use in various types of magnetic devices, such as magnetic tunnel junctions and spin-valve giant magnetoresistance recording heads, includes an antiferromagnetic layer formed of an alloy of osmium and manganese, wherein the osmium is present in the range of approximately 10 to 30 atomic %. The antiferromagnetic layer is deposited on a non-reactive underlayer, preferably one formed of a noble metal, such as platinum, palladium or alloys thereof. The antiferromagnetic material provides a strong exchange biasing for the ferromagnetic layer that is deposited on the antiferromagnetic layer. Iridium may be added to the osmium-manganese alloy, wherein the total of osmium and iridium is in the range of the approximately 10 to 30 atomic %, to increase the blocking temperature of the antiferromagnetic material. A template layer of permalloy (nickel-iron alloy) may be formed between the underlayer and the antiferromagnetic layer to improve the growth of the osmium-manganese alloy. The resulting antiferromagnetically exchange-coupled structure exhibits very high thermal stability, i.e., the magnetoresistance of magnetic tunnel junction devices is retained even during relatively high annealing process temperatures. This allows magnetic tunnel junction devices using the structure to be used as memory cells in magnetic random access memory arrays that are formed on substrates with electronic circuitry formed by conventional high-temperature CMOS processes and which require high temperature anneals of the completed memory chips.

    摘要翻译: 用于各种磁性装置(例如磁性隧道结和自旋阀巨磁电阻记录头)的反铁磁交换耦合结构包括由锇和锰合金形成的反铁磁层,其中锇存在于该范围内 约10至30原子%。 反铁磁层沉积在非反应性底层上,优选由贵金属形成的铂,钯或其合金形成。 反铁磁材料为沉积在反铁磁层上的铁磁层提供强的交换偏置。 铱可以添加到锇锰合金中,其中锇和铱的总和在大约10至30原子%的范围内,以增加反铁磁性材料的封闭温度。 可以在底层和反铁磁层之间形成坡莫合金(镍 - 铁合金)的模板层,以改善锇锰合金的生长。 所得到的反铁磁交换耦合结构表现出非常高的热稳定性,即即使在相对高的退火工艺温度下,磁性隧道结装置的磁阻仍然保持。 这允许使用该结构的磁隧道结器件用作磁性随机存取存储器阵列中的存储器单元,其形成在具有由常规高温CMOS工艺形成的电子电路的衬底上,并且需要完成的存储器芯片的高温退火。

    Magnetic tunnel junctions with improved tunneling magneto-resistance
    5.
    发明授权
    Magnetic tunnel junctions with improved tunneling magneto-resistance 有权
    具有改善隧道磁阻的磁隧道结

    公开(公告)号:US07276384B2

    公开(公告)日:2007-10-02

    申请号:US11151470

    申请日:2005-06-13

    IPC分类号: H01L21/00 H01L29/76

    摘要: A magnetic tunnel element that can be used, for example, as part of a read head or a magnetic memory cell, includes a first layer formed from an amorphous material, an amorphous tunnel barrier layer, and an interface layer between the first layer and the tunnel barrier layer. The interface layer is formed from a material that is crystalline when the material is in isolation from both the first layer and the tunnel barrier layer. Alternatively, the thickness of the interface layer is selected so that the interface layer is not crystalline. The first layer is formed from at least one material selected from the group consisting of amorphous ferromagnetic material, amorphous ferromagnetic materials, and amorphous non-magnetic materials. The interface layer is formed from a material selected from the group consisting of a ferromagnetic material and a ferrimagnetic material.

    摘要翻译: 可以用作例如读头或磁存储单元的一部分的磁隧道元件包括由非晶材料形成的第一层,无定形隧道势垒层和第一层与第一层之间的界面层 隧道势垒层。 当材料与第一层和隧道势垒层隔离时,界面层由结晶的材料形成。 或者,选择界面层的厚度,使得界面层不是结晶的。 第一层由选自非晶铁磁材料,非晶铁磁材料和非晶非磁性材料中的至少一种材料形成。 界面层由选自铁磁材料和铁磁材料的材料形成。

    MgO tunnel barriers and method of formation
    7.
    发明授权
    MgO tunnel barriers and method of formation 有权
    MgO隧道障碍及形成方法

    公开(公告)号:US08008097B2

    公开(公告)日:2011-08-30

    申请号:US12554420

    申请日:2009-09-04

    IPC分类号: H01L21/285

    CPC分类号: H01L43/08 H01L43/10 H01L43/12

    摘要: MgO tunnel barriers are formed by depositing a thin layer of Mg on a suitable underlayer, and then directing oxygen and additional Mg towards the Mg layer. The oxygen reacts with the additional Mg and the Mg in the Mg layer to form a MgO tunnel barrier that enjoys excellent tunneling characteristics. The MgO tunnel barriers so formed may be used in magnetic tunnel junctions having tunneling magnetoresistance (TMR) values of greater than 100%. The highest TMR values are observed for junctions that have been annealed and that have a (100) crystallographic orientation.

    摘要翻译: 通过在合适的底层上沉积薄层的Mg,然后将氧和附加的Mg导向Mg层,形成MgO隧道势垒。 氧与Mg层中的附加Mg和Mg反应形成具有优异隧道特性的MgO隧道势垒。 如此形成的MgO隧道势垒可用于具有大于100%的隧道磁阻(TMR)值的磁隧道结。 观察到已经退火并具有(100)晶体取向的结的最高TMR值。

    Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
    9.
    发明授权
    Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance 有权
    磁隧道势垒和具有高隧道磁阻的相关磁隧道结

    公开(公告)号:US07906231B2

    公开(公告)日:2011-03-15

    申请号:US11931110

    申请日:2007-10-31

    IPC分类号: G11B5/39

    摘要: Magnetic tunneling devices are formed from a first body centered cubic (bcc) magnetic layer and a second bcc magnetic layer. At least one spacer layer of bcc material between these magnetic layers exchange couples the first and second bcc magnetic layers. A tunnel barrier in proximity with the second magnetic layer permits spin-polarized current to pass between the tunnel barrier and the second layer; the tunnel barrier may be either MgO and Mg—ZnO. The first magnetic layer, the spacer layer, the second magnetic layer, and the tunnel barrier are all preferably (100) oriented. The MgO and Mg—ZnO tunnel barriers are prepared by first depositing a metallic layer on the second magnetic layer (e.g., a Mg layer), thereby substantially reducing the oxygen content in this magnetic layer, which improves the performance of the tunnel barriers.

    摘要翻译: 磁隧道器件由第一体心立方(bcc)磁性层和第二bcc磁性层形成。 这些磁性层之间的至少一个bcc材料间隔层交换耦合第一和第二bcc磁性层。 靠近第二磁性层的隧道势垒允许自旋极化电流在隧道势垒和第二层之间通过; 隧道势垒可以是MgO和Mg-ZnO。 第一磁性层,间隔层,第二磁性层和隧道势垒都优选为(100)取向。 通过首先在第二磁性层(例如,Mg层)上沉积金属层来制备MgO和Mg-ZnO隧道势垒,从而大大降低该磁性层中的氧含量,这改善了隧道势垒的性能。