摘要:
In a method of forming a contact structure, a first insulation layer including a first contact hole is formed on a substrate. A metal layer including tungsten is formed to fill the first contact hole. A planarization process is performed on the metal layer until the first insulation layer is exposed to form a first contact. A second contact is grown from the first contact. The second contact is formed without performing a photolithography process and an etching process to prevent misalignments.
摘要:
In methods of manufacturing a variable resistance structure and a phase-change memory device, after forming a first insulation layer on a substrate having a contact region, a contact hole exposing the contact region is formed through the first insulation layer. After forming a first conductive layer on the first insulation layer to fill up the contact hole, a first protection layer pattern is formed on the first conductive layer. The first conductive layer is partially etched to form a contact and to form a pad on the contact. A second protection layer is formed on the first protection layer pattern, and then an opening exposing the pad is formed through the second protection layer and the first protection layer pattern. After formation of a first electrode, a phase-change material layer pattern and a second electrode are formed on the first electrode and the second protection layer.
摘要:
In methods of manufacturing a variable resistance structure and a phase-change memory device, after forming a first insulation layer on a substrate having a contact region, a contact hole exposing the contact region is formed through the first insulation layer. After forming a first conductive layer on the first insulation layer to fill up the contact hole, a first protection layer pattern is formed on the first conductive layer. The first conductive layer is partially etched to form a contact and to form a pad on the contact. A second protection layer is formed on the first protection layer pattern, and then an opening exposing the pad is formed through the second protection layer and the first protection layer pattern. After formation of a first electrode, a phase-change material layer pattern and a second electrode are formed on the first electrode and the second protection layer.
摘要:
A plug comprises a first insulating interlayer, a tungsten pattern and a tungsten oxide pattern. The first insulating interlayer has a contact hole formed therethrough on a substrate. The tungsten pattern is formed in the contact hole. The tungsten pattern has a top surface lower than an upper face of the first insulating interlayer. The tungsten oxide pattern is formed in the contact hole and on the tungsten pattern. The tungsten oxide pattern has a level face.
摘要:
Methods are provided for fabricating contacts in integrated circuit devices, such as phase-change memories. A protection layer and a sacrificial layer are sequentially formed on a semiconductor substrate. A contact hole is formed through the sacrificial layer and the protection layer. A conductive layer is formed on the sacrificial layer and in the contact hole, and portions of the conductive layer and the sacrificial layer are removed to expose the protection layer and form a conductive plug protruding from the protection layer. A protruding portion of the conductive plug removed to leave a contact plug in the protection layer. A phase-change data storage element may be formed on the contact plug.
摘要:
A phase-change memory device including a first contact region and a second contact region formed on a semiconductor substrate. A first insulating layer with a first contact hole and a second contact hole is disposed on the semiconductor substrate, exposing the first and second contact regions. A first conductive layer is disposed on the first insulating interlayer to fill the first and the second contact holes. A first protection layer pattern and a lower wiring protection pattern are disposed on the first conductive layer. A first contact with a first electrode and a second contact with a lower wiring are disposed so as to connect the first and second contact regions. A second protection layer with a second electrode is disposed on the first protection layer pattern and the lower wiring protection pattern. A via filled with a phase-change material is disposed between the first electrode and the second electrode.
摘要:
A method of forming a ferroelectric device includes forming a ferroelectric pattern on a substrate, the ferroelectric pattern including a ferroelectric material including titanium and oxygen, forming an insulating layer on the ferroelectric pattern, and planarizing the insulating layer using a slurry until the ferroelectric pattern is exposed, wherein the ferroelectric pattern serves as a polishing stop pattern and the slurry includes ceria.
摘要:
Methods of forming ferroelectric layers include forming a ferroelectric layer on a substrate and chemically-mechanically polishing a surface of the ferroelectric layer by rotating a polishing pad on the surface at a rotation speed in a range from about 5 rpm to about 25 rpm. This polishing step includes pressing the polishing pad onto the surface of the ferroelectric layer at a pressure in a range from about 0.5 psi to about 3 psi. This polishing step may be followed by the step of exposing the polished surface to a rapid thermal anneal. This anneal can be performed in an inert atmosphere containing a gas selected from a group consisting of nitrogen, helium, argon and neon.
摘要:
A plug comprises a first insulating interlayer, a tungsten pattern and a tungsten oxide pattern. The first insulating interlayer has a contact hole formed therethrough on a substrate. The tungsten pattern is formed in the contact hole. The tungsten pattern has a top surface lower than an upper face of the first insulating interlayer. The tungsten oxide pattern is formed in the contact hole and on the tungsten pattern. The tungsten oxide pattern has a level face.
摘要:
Methods are provided for fabricating contacts in integrated circuit devices, such as phase-change memories. A protection layer and a sacrificial layer are sequentially formed on a semiconductor substrate. A contact hole is formed through the sacrificial layer and the protection layer. A conductive layer is formed on the sacrificial layer and in the contact hole, and portions of the conductive layer and the sacrificial layer are removed to expose the protection layer and form a conductive plug protruding from the protection layer. A protruding portion of the conductive plug removed to leave a contact plug in the protection layer. A phase-change data storage element may be formed on the contact plug.