摘要:
Example embodiments relate to a semiconductor device and a method of manufacturing the same. A semiconductor device according to example embodiments may have reduced disturbances during reading operations and a reduced short channel effect. The semiconductor device may include a semiconductor substrate having a body and a pair of fins protruding from the body. Inner spacer insulating layers may be formed on an upper portion of an inner sidewall of the pair of fins so as to reduce the entrance to the region between the pair of fins. A gate electrode may cover a portion of the external sidewalls of the pair of fins and may extend across the inner spacer insulating layers so as to define a void between the pair of fins. Gate insulating layers may be interposed between the gate electrode and the pair of fins.
摘要:
Example embodiments relate to a semiconductor device and a method of manufacturing the same. A semiconductor device according to example embodiments may have reduced disturbances during reading operations and a reduced short channel effect. The semiconductor device may include a semiconductor substrate having a body and a pair of fins protruding from the body. Inner spacer insulating layers may be formed on an upper portion of an inner sidewall of the pair of fins so as to reduce the entrance to the region between the pair of fins. A gate electrode may cover a portion of the external sidewalls of the pair of fins and may extend across the inner spacer insulating layers so as to define a void between the pair of fins. Gate insulating layers may be interposed between the gate electrode and the pair of fins.
摘要:
Example embodiments relate to a semiconductor device and a method of manufacturing the same. A semiconductor device according to example embodiments may have reduced disturbances during reading operations and a reduced short channel effect. The semiconductor device may include a semiconductor substrate having a body and a pair of fins protruding from the body. Inner spacer insulating layers may be formed on an upper portion of an inner sidewall of the pair of fins so as to reduce the entrance to the region between the pair of fins. A gate electrode may cover a portion of the external sidewalls of the pair of fins and may extend across the inner spacer insulating layers so as to define a void between the pair of fins. Gate insulating layers may be interposed between the gate electrode and the pair of fins.
摘要:
Example embodiments relate to a semiconductor device and a method of manufacturing the same. A semiconductor device according to example embodiments may have reduced disturbances during reading operations and a reduced short channel effect. The semiconductor device may include a semiconductor substrate having a body and a pair of fins protruding from the body. Inner spacer insulating layers may be formed on an upper portion of an inner sidewall of the pair of fins so as to reduce the entrance to the region between the pair of fins. A gate electrode may cover a portion of the external sidewalls of the pair of fins and may extend across the inner spacer insulating layers so as to define a void between the pair of fins. Gate insulating layers may be interposed between the gate electrode and the pair of fins.
摘要:
Example embodiments relate to a semiconductor device including a fin-type channel region and a method of fabricating the same. The semiconductor device includes a semiconductor substrate, a semiconductor pillar and a contact plug. The semiconductor substrate includes at least one pair of fins used (or functioning) as an active region. The semiconductor pillar may be interposed between portions of the fins to connect the fins. The contact plug may be disposed (or formed) on the semiconductor pillar and electrically connected to top surfaces of the fins.
摘要:
Example embodiments relate to a semiconductor device including a fin-type channel region and a method of fabricating the same. The semiconductor device includes a semiconductor substrate, a semiconductor pillar and a contact plug. The semiconductor substrate includes at least one pair of fins used (or functioning) as an active region. The semiconductor pillar may be interposed between portions of the fins to connect the fins. The contact plug may be disposed (or formed) on the semiconductor pillar and electrically connected to top surfaces of the fins.
摘要:
A method of fabricating a non-volatile memory device according to example embodiments may include forming a semiconductor layer on a substrate. A plurality of lower charge storing layers may be formed on a bottom surface of the semiconductor layer. A plurality of lower control gate electrodes may be formed on the plurality of lower charge storing layers. A plurality of upper charge storing layers may be formed on a top surface of the semiconductor layer. A plurality of upper control gate electrodes may be formed on the plurality of upper charge storing layers, wherein the plurality of lower and upper control gate electrodes may be arranged alternately.
摘要:
A method of fabricating a non-volatile memory device according to example embodiments may include forming a semiconductor layer on a substrate. A plurality of lower charge storing layers may be formed on a bottom surface of the semiconductor layer. A plurality of lower control gate electrodes may be formed on the plurality of lower charge storing layers. A plurality of upper charge storing layers may be formed on a top surface of the semiconductor layer. A plurality of upper control gate electrodes may be formed on the plurality of upper charge storing layers, wherein the plurality of lower and upper control gate electrodes may be arranged alternately.
摘要:
Unit cells of a non-volatile memory device and a method thereof are provided. In an example, the unit cell may include a first memory transistor and a second memory transistor connected to each other in series and further connected in common to a word line, the first and second memory transistors including first and second storage nodes, respectively, the first and second storage nodes configured to execute concurrent memory operations. In another example, the unit cell may include a semiconductor substrate in which first and second bit line regions are defined, first and second storage node layers respectively formed on the semiconductor substrate between the first and second bit line regions, a first pass gate electrode formed on the semiconductor substrate between the first bit line region and the first storage node layer, a second pass gate electrode formed on the semiconductor substrate between the second bit line region and the second storage node layer, a third pass gate electrode formed on the semiconductor substrate between the first and second storage node layers, a third bit line region formed in a portion of the semiconductor substrate under the third pass gate electrode and a control gate electrode extending across the first and second storage node layers. The example unit cells may be implemented within a non-volatile memory device (e.g., a flash memory device), such that the non-volatile memory device may include a plurality of example unit cells.
摘要:
A nonvolatile memory device is provided. In the nonvolatile memory device, a semiconductor substrate of a first conductivity type includes first and second fins. A common bit line electrode connects one end of the first fin to one end of the second fin. Control gate electrodes cover the first and second fins and expand across the top surface of each of the first and second fins. A first string selection gate electrode positioned between the common bit line electrode and the control gate electrodes may cover the first and second fins and expand across the top surface of each of the first and second fins. A second string selection gate electrode positioned between the first string selection gate electrode and the control gate electrodes may cover the first and second fins and expand across the top surface of each of the first and second fins.