摘要:
A nonvolatile memory device having a blocking insulating layer with an excellent data retention property and a method of fabricating the same are provided. The nonvolatile memory device may include a semiconductor substrate having a channel region formed therein; and a gate stack including a tunneling insulating layer, a charge storing layer, a blocking insulating layer and a control gate electrode sequentially stacked on the channel region of the semiconductor substrate. The blocking insulating layer may comprise a lanthanum aluminum oxide having a formula of La2-xAlxOy and the composition parameter x may be 1
摘要翻译:提供了具有优异数据保存性能的阻挡绝缘层的非易失性存储器件及其制造方法。 非易失性存储器件可以包括其中形成有沟道区的半导体衬底; 以及栅极堆叠,其包括顺序堆叠在半导体衬底的沟道区上的隧道绝缘层,电荷存储层,阻挡绝缘层和控制栅电极。 阻挡绝缘层可以包含具有下式的La 2-x Al x O y的氧化镧铝,组成参数x可以是1
摘要:
A method of fabricating a nonvolatile memory device includes forming a charge tunneling layer on a semiconductor substrate, forming a charge trapping layer on the charge tunneling layer, forming a charge blocking layer on the charge trapping layer by supplying sequentially a metal source gas and an oxidizing gas onto the charge trapping layer, such that a supplying time of the oxidizing gas is form about 0.1 second to about 1.0 second, and forming a gate electrode layer on the charge blocking layer.
摘要:
A method of forming a flash memory device can include forming a tunneling oxide film on a semiconductor substrate, forming a charge storing layer on the tunneling oxide film, forming a first blocking oxide film on the charge storing layer at a first temperature, forming a second blocking oxide film on the first blocking oxide film at a second temperature higher than the first temperature, and forming a gate electrode on the second blocking oxide film.
摘要:
A method of forming a flash memory device can include forming a tunneling oxide film on a semiconductor substrate, forming a charge storing layer on the tunneling oxide film, forming a first blocking oxide film on the charge storing layer at a first temperature, forming a second blocking oxide film on the first blocking oxide film at a second temperature higher than the first temperature, and forming a gate electrode on the second blocking oxide film.
摘要:
Methods of manufacturing a semiconductor device are provided including forming a charge storage layer on a gate insulating layer that is on a semiconductor substrate. A blocking insulating layer is formed on the charge storage layer and an electrode layer is formed on the blocking insulating layer. The blocking insulating layer may be formed by forming a lower metal oxide layer at a first temperature and forming an upper metal oxide layer on the lower metal oxide layer at a second temperature, lower than the first temperature.
摘要:
Methods of manufacturing a semiconductor device are provided including forming a charge storage layer on a gate insulating layer that is on a semiconductor substrate. A blocking insulating layer is formed on the charge storage layer and an electrode layer is formed on the blocking insulating layer. The blocking insulating layer may be formed by forming a lower metal oxide layer at a first temperature and forming an upper metal oxide layer on the lower metal oxide layer at a second temperature, lower than the first temperature.
摘要:
A metal-oxy-nitride seed dielectric layer can be formed on a metal-nitride lower electrode of a metal-insulator-metal (MIM) type capacitor. The metal-oxy-nitride seed dielectric layer can act as a barrier layer to reduce a reaction with the metal-nitride lower electrode during, for example, backend processing used to form upper levels of metallization/structures in an integrated circuit including the MIM type capacitor. Nitrogen included in the metal-oxy-nitride seed dielectric layer can reduce the type of reaction, which may occur in conventional type MIM capacitors. A metal-oxide main dielectric layer can be formed on the metal-oxy-nitride seed dielectric layer and can remain separate from the metal-oxy-nitride seed dielectric layer in the MIM type capacitor. The metal-oxide main dielectric layer can be stabilized (using, for example, a thermal or plasma treatment) to remove defects (such as carbon) therefrom and to adjust the stoichiometry of the metal-oxide main dielectric layer.
摘要:
Methods of forming metal-insulator-metal type capacitors in integrated circuit memory devices can include crystallizing an HfO2 dielectric layer on a lower electrode of a capacitor structure in a low temperature plasma treatment at a temperature in range between about 250 degrees Centigrade and about 450 degrees Centigrade. An upper electrode can be formed on the HfO2 dielectric layer.
摘要:
A metal-oxy-nitride seed dielectric layer can be formed on a metal-nitride lower electrode of a meta-insulator-metal (MIM) type capacitor. The metal-oxy-nitride seed dielectric layer can act as a barrier layer to reduce a reaction with the metal-nitride lower electrode during, for example, backend processing used to form upper levels of metallization/structures in an integrated circuit including the MIM type capacitor. Nitrogen included in the metal-oxy-nitride seed dielectric layer can reduce the type of reaction, which may occur in conventional type MIM capacitors. A metal-oxide main dielectric layer can be formed on the metal-oxy-nitride seed dielectric layer and can remain separate from the metal-oxy-nitride seed dielectric layer in the MIM type capacitor. The metal-oxide main dielectric layer can be stabilized (using, for example, a thermal or plasma treatment) to remove defects (such as carbon) therefrom and to adjust the stoichiometry of the metal-oxide main dielectric layer.
摘要:
A lower electrode is formed from a first metal on a semiconductor substrate. Atoms of a second metal, that is different than the first metal, are diffused into the lower electrode. A dielectric layer is formed on the lower electrode, and an upper electrode is formed on the dielectric layer. Diffusion of second metal atoms into the lower electrode may reduce or prevent crystal grain growth and agglomeration on a surface of the lower electrode during a subsequent high temperature process.