摘要:
A lower electrode is formed from a first metal on a semiconductor substrate. Atoms of a second metal, that is different than the first metal, are diffused into the lower electrode. A dielectric layer is formed on the lower electrode, and an upper electrode is formed on the dielectric layer. Diffusion of second metal atoms into the lower electrode may reduce or prevent crystal grain growth and agglomeration on a surface of the lower electrode during a subsequent high temperature process.
摘要:
Provided are 1) a method for forming a ruthenium film under a single process condition, whereby high adhesion of the ruthenium film to a lower layer is maintained, and 2) a method for manufacturing an metal-insulator-metal (MIM) capacitor using the ruthenium film forming method. The method for forming a ruthenium film includes supplying bis(isoheptane-2,4-dionato)norbornadiene ruthenium at a flow rate of 0.2-1 ccm and oxygen at a flow rate of 20-60 sccm, and depositing the ruthenium film at a temperature of 330-430° C. under a pressure of 0.5-5 Torr using chemical vapor deposition (CVD).
摘要:
Provided are 1) a method for forming a ruthenium film under a single process condition, whereby high adhesion of the ruthenium film to a lower layer is maintained, and 2) a method for manufacturing an metal-insulator-metal (MIM) capacitor using the ruthenium film forming method. The method for forming a ruthenium film includes supplying bis(isoheptane-2,4-dionato)norbornadiene ruthenium at a flow rate of 0.2–1 ccm and oxygen at a flow rate of 20–60 sccm, and depositing the ruthenium film at a temperature of 330–430° C. under a pressure of 0.5–5 Torr using chemical vapor deposition (CVD).
摘要:
Capacitors include an integrated circuit (semiconductor) substrate and an interlayer dielectric disposed on the integrated circuit substrate and including a metal plug therein. A lower electrode is disposed on the interlayer dielectric and contacting the metal plug. The lower electrode includes a cavity therein and a buried layer in the cavity. The buried layer is an oxygen absorbing material. A dielectric layer disposed on the lower electrode and an upper electrode is disposed on the dielectric layer. The lower electrode may be a noble metal layer. The buried layer may fill in the cavity and may not contain oxygen (O2) when initially formed.
摘要:
An integrated circuit device is formed by providing a substrate and forming a capacitor on the substrate. The capacitor includes a lower electrode disposed on the substrate, a dielectric layer on the lower electrode, and an upper electrode on the dielectric. A hydrogen barrier insulation layer is formed on the upper electrode and a hydrogen barrier spacer is formed on a sidewall of the capacitor.
摘要:
Capacitors include an integrated circuit (semiconductor) substrate and an interlayer dielectric disposed on the integrated circuit substrate and including a metal plug therein. A lower electrode is disposed on the interlayer dielectric and contacting the metal plug. The lower electrode includes a cavity therein and a buried layer in the cavity. The buried layer is an oxygen absorbing material. A dielectric layer disposed on the lower electrode and an upper electrode is disposed on the dielectric layer. The lower electrode may be a noble metal layer. The buried layer may fill in the cavity and may not contain oxygen (O2) when initially formed.
摘要:
A dielectric region for a device such as a memory cell capacitor is formed by depositing a metal oxide, such as tantalum oxide, on a substrate at a first deposition rate in a first atmosphere maintained within a first temperature range and a first pressure range that produce a first tantalum oxide layer with a desirable step coverage. Metal oxide is subsequently deposited on the first metal oxide layer in a second atmosphere maintained within a second temperature range and a second pressure range that produce a second deposition rate greater than the first deposition rate to form a second tantalum oxide layer on the first tantalum oxide layer. For example, the first atmosphere may be maintained at a temperature in a range from about 350° C. to about 460° C. and a pressure in a range from about 0.01 Torr to about 2.0 Torr during formation of a first tantalum oxide layer, and the second atmosphere may be maintained at a temperature in a range from about 400° C. to about 500° C. and a pressure in a range from about 0.1 Torr to about 10.0 Torr during formation of a second tantalum oxide layer.
摘要:
Methods of forming metal-insulator-metal type capacitors in integrated circuit memory devices can include crystallizing an HfO2 dielectric layer on a lower electrode of a capacitor structure in a low temperature plasma treatment at a temperature in range between about 250 degrees Centigrade and about 450 degrees Centigrade. An upper electrode can be formed on the HfO2 dielectric layer.
摘要:
A metal-oxy-nitride seed dielectric layer can be formed on a metal-nitride lower electrode of a meta-insulator-metal (MIM) type capacitor. The metal-oxy-nitride seed dielectric layer can act as a barrier layer to reduce a reaction with the metal-nitride lower electrode during, for example, backend processing used to form upper levels of metallization/structures in an integrated circuit including the MIM type capacitor. Nitrogen included in the metal-oxy-nitride seed dielectric layer can reduce the type of reaction, which may occur in conventional type MIM capacitors. A metal-oxide main dielectric layer can be formed on the metal-oxy-nitride seed dielectric layer and can remain separate from the metal-oxy-nitride seed dielectric layer in the MIM type capacitor. The metal-oxide main dielectric layer can be stabilized (using, for example, a thermal or plasma treatment) to remove defects (such as carbon) therefrom and to adjust the stoichiometry of the metal-oxide main dielectric layer.
摘要:
A metal-oxy-nitride seed dielectric layer can be formed on a metal-nitride lower electrode of a metal-insulator-metal (MIM) type capacitor. The metal-oxy-nitride seed dielectric layer can act as a barrier layer to reduce a reaction with the metal-nitride lower electrode during, for example, backend processing used to form upper levels of metallization/structures in an integrated circuit including the MIM type capacitor. Nitrogen included in the metal-oxy-nitride seed dielectric layer can reduce the type of reaction, which may occur in conventional type MIM capacitors. A metal-oxide main dielectric layer can be formed on the metal-oxy-nitride seed dielectric layer and can remain separate from the metal-oxy-nitride seed dielectric layer in the MIM type capacitor. The metal-oxide main dielectric layer can be stabilized (using, for example, a thermal or plasma treatment) to remove defects (such as carbon) therefrom and to adjust the stoichiometry of the metal-oxide main dielectric layer.