摘要:
A memory device including a dielectric thin film having a plurality of dielectric layers and a method of manufacturing the same are provided. The memory device includes: a bottom electrode; at least one dielectric thin film disposed on the bottom electrode and having a plurality of dielectric layers with different charge trap densities from each other; and an top electrode disposed on the dielectric thin film. Therefore, a memory device, which can be readily manufactured by a simple process and can be highly integrated using its simple structure, can be provided.
摘要:
An organic semiconductor device and a method of fabricating the same are provided. The device includes: a first electrode; an electron channel layer formed on the first electrode; and a second electrode formed on the electron channel layer, wherein the electron channel layer comprises: a lower organic layer formed on the first electrode; a nano-particle layer formed on the lower organic layer and including predetermined sizes of nano-particles that are spaced a predetermined distance apart from each other; and an upper organic layer formed over the nano-particle layer. Accordingly, a highly integrated organic semiconductor device can be fabricated by a simple fabrication process, and nonuniformity of devices due to threshold voltage characteristics and downsizing of the device can resolved, so that a semiconductor device having excellent performance can be implemented.
摘要:
A memory device including a dielectric thin film having a plurality of dielectric layers and a method of manufacturing the same are provided. The memory device includes: a bottom electrode; at least one dielectric thin film disposed on the bottom electrode and having a plurality of dielectric layers with different charge trap densities from each other; and an top electrode disposed on the dielectric thin film. Therefore, a memory device, which can be readily manufactured by a simple process and can be highly integrated using its simple structure, can be provided.
摘要:
Provided is a method of manufacturing a nano size-gap electrode device. The method includes the steps of: disposing a floated nano structure on a semiconductor layer; forming a mask layer having at least one opening pattern to intersect the nano structure; and depositing a metal on the semiconductor layer exposed through the opening pattern to form an electrode, such that a nano size-gap is provided under the nano structure by the nano structure.
摘要:
Provided are a method and apparatus for measuring an isoelectric point using a field effect transistor. The method includes providing a field effect transistor including a substrate, source and drain electrodes disposed on the substrate and spaced apart from each other, and a channel region between the source and drain electrodes, providing a first electrolyte solution having a first concentration to the channel region of the field effect transistor and measuring a first current value of the channel region between the source and drain electrodes, providing a second electrolyte solution having a second concentration greater than the first concentration and measuring a second current value of the channel region between the source and drain electrodes, and determining the isoelectric point of the field effect transistor or a material disposed on the field effect transistor using a difference between the first and second current values.
摘要:
Provided are a method and apparatus for measuring an isoelectric point using a field effect transistor. The method includes providing a field effect transistor including a substrate, source and drain electrodes disposed on the substrate and spaced apart from each other, and a channel region between the source and drain electrodes, providing a first electrolyte solution having a first concentration to the channel region of the field effect transistor and measuring a first current value of the channel region between the source and drain electrodes, providing a second electrolyte solution having a second concentration greater than the first concentration and measuring a second current value of the channel region between the source and drain electrodes, and determining as the isoelectric point of the field effect transistor or a material disposed on the field effect transistor using a difference between the first and second current values.
摘要:
Provided is a method of manufacturing a nano size-gap electrode device. The method includes the steps of: disposing a floated nano structure on a semiconductor layer; forming a mask layer having at least one opening pattern to intersect the nano structure; and depositing a metal on the semiconductor layer exposed through the opening pattern to form an electrode, such that a nano size-gap is provided under the nano structure by the nano structure.
摘要:
A biosensor using a nanodot and a method of manufacturing the same are provided. A silicon nanowire can be formed by a CMOS process to reduce manufacturing costs. In addition, an electrically charged nanodot is coupled to a target molecule to be detected, in order to readily change conductivity of the silicon nanowire, thereby making it possible to implement a biosensor capable of providing good sensitivity and being manufactured at a low cost.
摘要:
A biosensor using a nanodot and a method of manufacturing the same are provided. A silicon nanowire can be formed by a CMOS process to reduce manufacturing costs. In addition, an electrically charged nanodot is coupled to a target molecule to be detected, in order to readily change conductivity of the silicon nanowire, thereby making it possible to implement a biosensor capable of providing good sensitivity and being manufactured at a low cost.
摘要:
A method for manufacturing a biosensor includes forming a silicon nanowire channel, etching a first conductivity-type single crystalline silicon layer which is a top layer of a Silicon-On-Insulator (SOI) substrate to form a first conductivity-type single crystalline silicon line pattern, doping both sidewalls of the first conductivity-type single crystalline silicon line pattern with impurities of a second conductivity-type opposite to the first conductivity-type to form a second conductivity-type channel, forming second conductivity-type pads for forming electrodes at both ends of the first conductivity-type single crystalline silicon line pattern, forming, in an undoped region of the first conductivity-type single crystalline silicon line pattern, a first electrode for applying a reverse-bias voltage to insulate the first conductivity-type single crystalline silicon line pattern and the second conductivity-type channel from each other, and forming second electrodes for applying a bias voltage across the second conductivity-type channel on the second conductivity-type pad.