摘要:
An optofluidic lithography system including a membrane, a microfluidic channel, and a pneumatic chamber is provided. The membrane may be positioned between a pneumatic chamber and a microfluidic channel. The microfluidic channel may have a height corresponding to a displacement of the membrane and have a fluid flowing therein, the fluid being cured by light irradiated from the bottom to form a microstructure. The pneumatic chamber may induce the displacement of the membrane depending on an internal atmospheric pressure thereof.
摘要:
A fluidic channel system is provided. The fluidic channel system includes a light projection apparatus, a fluidic channel, and a rail. The light projection apparatus provides light. A photocurable fluid, which is selectively cured by the light, flows inside the fluidic channel. A fine structure which is to be formed by curing the photocurable fluid moves along the rail.
摘要:
A fluidic channel system is provided. The fluidic channel system includes a light projection apparatus, a fluidic channel, and a rail. The light projection apparatus provides light. A photocurable fluid, which is selectively cured by the light, flows inside the fluidic channel. A fine structure which is to be formed by curing the photocurable fluid moves along the rail.
摘要:
An optofluidic lithography system including a membrane, a microfluidic channel, and a pneumatic chamber is provided. The membrane may be positioned between a pneumatic chamber and a microfluidic channel. The microfluidic channel may have a height corresponding to a displacement of the membrane and have a fluid flowing therein, the fluid being cured by light irradiated from the bottom to form a microstructure. The pneumatic chamber may induce the displacement of the membrane depending on an internal atmospheric pressure thereof.
摘要:
An optofluidic lithography system including a membrane, a microfluidic channel, and a pneumatic chamber is provided. The membrane may be positioned between a pneumatic chamber and a microfluidic channel. The microfluidic channel may have a height corresponding to a displacement of the membrane and have a fluid flowing therein, the fluid being cured by light irradiated from the bottom to form a microstructure. The pneumatic chamber may induce the displacement of the membrane depending on an internal atmospheric pressure thereof.
摘要:
Disclosed are compositions and methods for self-assembling polymeric particles by using biological binders attached to subunits of a multi-sectioned polymeric particle.
摘要:
Provided is a light emitting diode (hereinafter, referred to as an LED) coating method, and more particularly, an LED coating method that can be used to coat a phosphor, a molding, etc., on an LED.The LED coating method includes (a) preparing a substrate and a plurality of LEDs arranged on the substrate; (b) applying a photoresist onto the substrate and the plurality of LEDs; and (c) selectively exposing the photoresist to light to form a first coating on surfaces of the plurality of LEDs. Here, the first coating is formed by curing the photoresist.
摘要:
Provided is a light emitting diode (hereinafter, referred to as an LED) coating method, and more particularly, an LED coating method that can be used to coat a phosphor, a molding, etc., on an LED.The LED coating method includes (a) preparing a substrate and a plurality of LEDs arranged on the substrate; (b) applying a photoresist onto the substrate and the plurality of LEDs; and (c) selectively exposing the photoresist to light to form a first coating on surfaces of the plurality of LEDs. Here, the first coating is formed by curing the photoresist.
摘要:
The methods, systems 400 and apparatus disclosed herein concern metal 150 impregnated porous substrates 110, 210, Certain embodiments of the invention concern methods for producing metal-coated porous silicon substrates 110, 210 that exhibit greatly improved uniformity and depth of penetration of metal 150 deposition. The increased uniformity and depth allow improved and more reproducible Raman detection of analytes. In exemplary embodiments of the invention, the methods may comprise oxidation of porous silicon 110, immersion in a metal salt solution, 130, drying and thermal decomposition of the metal salt 140 to form a metal deposit 150. In other exemplary embodiments of the invention, the methods may comprise microfluidic impregnation of porous silicon substrates 210 with one or more metal salt solutions 130. Other embodiments of the invention concern apparatus and/or systems 400 for Raman detection of analytes, comprising metal-coated porous silicon substrates 110, 210 prepared by the disclosed methods.