Abstract:
A system for producing substantially identical specific binding ligand (e.g., nucleic acid) probe arrays, for instance, by preparing and replicating an original master array and/or by providing a reusable assay array that is capable of being regenerated. In one embodiment the system includes the preparation and use of a) a master array surface having address sequences immobilized in the form of a patterned, and optionally random, array, b) a multi-ligand conjugate having a binding domain complementary to an address sequence, a binding domain complementary to a target sequence, and a third ligand for use in forming (e.g., by binding or polymerization) the conjugates into or onto the surface of assay array, which can be used with or upon disassociation of the address and its complementary sequences.
Abstract:
Surface coatings including microparticles immobilized in a matrix of polymeric material on a substrate are described. The microparticles can also include an agent which can be useful for various applications, such as medical applications. This invention relates to the field of surface coatings for use in various applications. More particularly, the invention relates to surface coating useful for drug delivery, imaging and other uses of microparticles immobilized via a polymeric matrix.
Abstract:
Arrays including microparticles having probe moieties are used for the detection of a target in a sample. Microparticles are immobilized in clustered arrangements on at least a portion of a substrate. A detection scheme is performed to detect a marker associated with the target which can be bound to a probe of a clustered arrangement.
Abstract:
Arrays including microparticles having probe and marker moieties are used for the detection of a target in a sample. Microparticles are randomly immobilized on at least a portion of a substrate. A detection scheme is performed to detect the marker associated with the microparticle and the identity of the probe, and any target bound to the probe.
Abstract:
A reagent and related method for use in passivating a biomaterial surface, the reagent including a latent reactive group and a bifunctional aliphatic acid (e.g., fatty acid), in combination with a spacer group linking the latent reactive group to the aliphatic acid in a manner that preserves the desired function of each group. Once bound to the surface, via the latent reactive group, the reagent presents the aliphatic acid to the physiological environment, in vivo, in a manner (e.g., concentration and orientation) sufficient to hold and orient albumin.
Abstract:
A system for producing substantially identical specific binding ligand probe arrays, for instance, by preparing and replicating an original master array and/or by providing a reusable assay array that is capable of being regenerated. In one embodiment the system includes the preparation and use of a) a master array surface having address ligands immobilized thereon, b) a multi-ligand conjugate having a binding domain complementary to an address ligand, a binding domain complementary to a target ligand, and a third ligand for use in transferring the conjugates into or onto the surface of assay array, which can be used with or upon disassociation of the address and its complementary ligands.
Abstract:
Method and reagent composition for covalent attachment of target molecules, such as nucleic acids, onto the surface of a substrate. The reagent composition includes groups capable of covalently binding to the target molecule. Optionally, the composition can contain photoreactive groups for use in attaching the reagent composition to the surface. The reagent composition can be used to provide activated slides for use in preparing microarrays of nucleic acids.