Abstract:
A noise-mitigated continuous-wave frequency-modulated radar includes, for example, a transmitter for generating a radar signal, a receiver for receiving a reflected radar signal and comprising a mixer for generating a baseband signal in response to the received radar signal and in response to a local oscillator (LO) signal, and a signal shifter coupled to at least one of the transmitter, LO input of the mixer in the receiver and the baseband signal generated by the mixer. The impact of amplitude noise or phase noise associated with interferers, namely, for example, strong reflections from nearby objects, and electromagnetic coupling from transmit antenna to receive antenna, on the detection of other surrounding objects is reduced by configuring the signal shifter in response to an interferer frequency and phase offset.
Abstract:
A circuit includes a noise generator and a delay element. The output of the noise generator couples to the input of the delay element. The output of the delay element is coupled to a first input of a logic circuit, and the output of the noise generator is coupled to a second input of the logic circuit. The output of the logic circuit is coupled to a first control input of a waveform storage circuit. The waveform storage circuit is configured to produce a first digital waveform on its output responsive to a first logic state on the output of the logic circuit and to produce a second digital waveform on its output responsive to a second logic state on the output of the logic circuit. A sequencer has a sequencer output coupled to the second control input of the waveform storage circuit.
Abstract:
A radio-frequency (RF) sampling transmitter (e.g., of the type that may be used in 5G wireless base stations) includes a complex baseband digital-to-analog converter (DAC) response compensator that operates on a complex baseband signal at a sampling rate lower than the sampling rate of an RF sampling DAC in the RF sampling transmitter. The DAC response compensator flattens the sample-and-hold response of the RF sampling DAC only in the passband of interest, addressing the problem of a sin c response introduced by the sample-and-hold operation of the RF sampling DAC and avoiding the architectural complexity and high power consumption of an inverse sin c filter that operates on the signal at a point in the signal chain after it has already been up-converted to an RF passband.
Abstract:
A multi-mode radar system, radar signal processing methods and configuration methods, including using predetermined, range/mode-specific pushing windows to perform windowing on range and velocity object data before performing an FFT on the windowed object data matrix to generate a three-dimensional object matrix including range, velocity and angle data. The individual windows have an angular spectral response that corresponds to a combined angular coverage field of view of the transmit and receive antennas for the corresponding mode to minimize the total weighted energy outside the main lobe and to provide increasing spectral leakage outside the combined angular coverage field of view with angular offset from the main lobe to push out much of the spectral leakage into regions where leakage tolerance is high due to the corresponding combined angular coverage field of view of the transmit and receive antennas.
Abstract:
A noise-mitigated continuous-wave frequency-modulated radar includes, for example, a transmitter for generating a radar signal, a receiver for receiving a reflected radar signal and comprising a mixer for generating a baseband signal in response to the received radar signal and in response to a local oscillator (LO) signal, and a signal shifter coupled to at least one of the transmitter, LO input of the mixer in the receiver and the baseband signal generated by the mixer. The impact of amplitude noise or phase noise associated with interferers, namely, for example, strong reflections from nearby objects, and electromagnetic coupling from transmit antenna to receive antenna, on the detection of other surrounding objects is reduced by configuring the signal shifter in response to an interferer frequency and phase offset.
Abstract:
A method for dithering a fractional clock divider includes generating a first clock enable sequence based on a seed pattern of M ones and N minus M zeros, selecting a cyclic rotation of the seed pattern after N input clock cycles, and generating a second clock enable sequence based on the cyclic rotation. A clock gate receives the input clock signal and the clock enable sequences and outputs M clock cycles for every N input clock cycles. A random number generator indicates the cyclic rotation of the seed pattern. The seed pattern can be replaced with an updated seed pattern of M ones and N minus M zeros in a different order. In some examples, the clock enable sequence is generated using a cyclic shift register containing the seed pattern and a multiplexor. In other examples, the clock enable sequence is generated using a modulo N counter and a comparator.
Abstract:
A frequency modulated continuous wave (FMCW) radar system is provided that includes a receiver configured to generate a digital intermediate frequency (IF) signal, and an interference monitoring component coupled to the receiver to receive the digital IF signal, in which the interference monitoring component is configured to monitor at least one sub-band in the digital IF signal for interference, in which the at least one sub-band does not include a radar signal.
Abstract:
In the present disclosure, an error in the velocity and position computed from a three dimensional IMU measurement is reduced confined by computing an auxiliary speed in a drive direction of a vehicle from an angular velocity measurement and a lateral acceleration measurement. The auxiliary speed is then compared with the speed computed from the acceleration measurement. The auxiliary speed is provided as the speed of the vehicle mounted with the IMU when the absolute difference between the auxiliary speed and the speed computed from the acceleration measurement in the drive direction is above a threshold. The auxiliary speed is computed when the vehicle is detected to be in a curved motion. According to another aspect of the present disclosure, the bias errors are determined when the vehicle is in a steady state, at rest or in a straight line motion. The bias errors are used to obtain the accurate auxiliary measurement.
Abstract:
In the present disclosure, an error in the velocity and position computed from a three dimensional IMU measurement is reduced confined by computing an auxiliary speed in a drive direction of a vehicle from an angular velocity measurement and a lateral acceleration measurement. The auxiliary speed is then compared with the speed computed from the acceleration measurement. The auxiliary speed is provided as the speed of the vehicle mounted with the IMU when the absolute difference between the auxiliary speed and the speed computed from the acceleration measurement in the drive direction is above a threshold. The auxiliary speed is computed when the vehicle is detected to be in a curved motion. According to another aspect of the present disclosure, the bias errors are determined when the vehicle is in a steady state, at rest or in a straight line motion. The bias errors are used to obtain the accurate auxiliary measurement.
Abstract:
A digital up-converter (DUC) includes conjugate-mixer-combiner. The conjugate-mixer-combiner includes a pre-combiner configured to generate combinations of a first in-phase (I) value to be transmitted at a first frequency of a first frequency band, a first quadrature (Q) value to be transmitted at the first frequency of a first frequency band, a second I value for to be transmitted at a second frequency of a second frequency band, and a second Q value to be transmitted at the second frequency of a second frequency band. The conjugate-mixer-combiner further includes a plurality of multipliers collectively configured to shift the combinations based on an average difference between the first frequency and the second frequency.