Abstract:
A system and method for the label-free analysis of cells includes a purification device configured to receive a heterogeneous population of cells, the purification device temporarily trapping therein a subpopulation of cells from the heterogeneous population of cells and a cell analysis device positioned downstream of the purification device and configured to measure one or more cellular parameters including cell count, measured cell size, and/or cell morphology. In an alternative embodiment, the subpopulation of cells is analyzed while they are trapped within the purification device.
Abstract:
A particle sorting system includes an inlet and an inertial focusing microchannel disposed in a substrate and having a downstream expanding region at a distal end, wherein the inlet is connected to an upstream end of the microchannel. A source of different shaped particles is connected to the inlet, wherein the source of different shaped particles are configured for continuous introduction into the inlet. A plurality of outlets is connected to the microchannel at the downstream expanding region. Fluidic resistors are located in the respective outlets. Different resistances may be used in the outlets to capture enriched fractions of particles having particular particle shape(s).
Abstract:
A particle sorting system includes an inlet and an inertial focusing microchannel disposed in a substrate and having a downstream expanding region at a distal end, wherein the inlet is connected to an upstream end of the microchannel. A source of different shaped particles is connected to the inlet, wherein the source of different shaped particles are configured for continuous introduction into the inlet. A plurality of outlets is connected to the microchannel at the downstream expanding region. Fluidic resistors are located in the respective outlets. Different resistances may be used in the outlets to capture enriched fractions of particles having particular particle shape(s).
Abstract:
A microfluidic platform is disclosed that uses obstacles placed at particular location(s) within the channel cross-section to turn and stretch fluid. The asymmetric flow behavior upstream and downstream of the obstacle(s) due to fluid inertia manifests itself as a total deformation of the topology of streamlines that effectively creates a tunable net secondary flow. The system and methods passively creates strong secondary flows at moderate to high flow rates in microchannels. These flows can be accurately controlled by the numbers and particular geometric placement of the obstacle(s) within the channel.