Abstract:
An oxygen storage material comprises three pyrochlore-type composite oxides which are a ceria-zirconia composite oxide, a lanthana-zirconia composite oxide, and a ceria-zirconia-lanthana composite oxide, and which coexist together, wherein the oxygen storage material contains: first secondary particles made of the pyrochlore-type ceria-zirconia composite oxide and the pyrochlore-type ceria-zirconia-lanthana composite oxide; and second secondary particles made of the pyrochlore-type lanthana-zirconia composite oxide and the pyrochlore-type ceria-zirconia-lanthana composite oxide.
Abstract:
The object of the present invention is to provide a high-performance exhaust gas purifying catalyst that can achieve oxygen absorption/release capacity and NOx purification performance. The object is solved by an exhaust gas purifying catalyst, which comprises a ceria-zirconia composite oxide having a pyrochlore-type ordered array structure in the upstream part of the catalyst coating layer, in which the ceria-zirconia composite oxide contains at least one additional element selected from the group consisting of praseodymium, lanthanum, and yttrium at 0.5 to 5.0 mol % of the total cation amount, and has a molar ratio of (cerium+the additional element):(zirconium) of 43:57 to 48:52.
Abstract:
An exhaust gas purification catalyst having a base and a catalytic coating layer formed thereon includes an alumina support, a platinum-group metal, an iron oxide-zirconia-based composite oxide, and a lanthanoid oxide in the same catalytic coating layer.
Abstract:
A core-shell oxide material comprises: a core which comprises a ceria-zirconia based solid solution powder having at least one ordered phase of a pyrochlore phase and a κ phase; and a shell which comprises an alumina based oxide disposed on at least a portion of a surface of the core.
Abstract:
A catalyst for purification of exhaust gas, wherein a substrate and a catalyst coat layer which is formed on a surface of the substrate and which comprises catalyst particles, wherein the catalyst coat layer has an average thickness in a range of 25 to 160 μm, and a void fraction in a range of 50 to 80% by volume as measured by a weight-in-water method, 0.5 to 50% by volume of all voids in the catalyst coat layer consist of high-aspect ratio pores which have equivalent circle diameters in a range of 2 to 50 μm in a cross-sectional image of a cross-section of the catalyst coat layer which the cross-section is perpendicular to a flow direction of exhaust gas in the substrate, and which have aspect ratios of 5 or higher, and the high-aspect ratio pores have an average aspect ratio in a range of 10 to 50.
Abstract:
Provided is an exhaust gas control catalyst including: a substrate (21); and a catalyst layer (22) that is arranged on the substrate, in which the catalyst layer (22) includes a palladium region (23) that contains palladium, aluminum oxide, ceria-zirconia solid solution, and a composite oxide of lanthanum, iron, and zirconium, and a rhodium region (24) that is arranged adjacent to the palladium region along a plane direction of the catalyst layer and contains rhodium, aluminum oxide, and ceria-zirconia solid solution.
Abstract:
A ceria-zirconia-based composite oxide containing a composite oxide of ceria and zirconia is provided, in which primary particles having a particle diameter of 1.5 to 4.5 μm account for, on a particle number basis, at least 50% of all primary particles in the ceria-zirconia-based composite oxide, and the molar ratio of cerium to zirconium in the ceria-zirconia-based composite oxide is between 43:57 and 55:45.
Abstract:
A core-shell support, comprising: a core which comprises at least one oxygen storage/release material selected from the group consisting of ceria-zirconia based solid solutions and alumina-doped ceria-zirconia based solid solutions; and a shell which comprises a rare earth-zirconia based composite oxide represented by a composition formula: (Re1-xCex)2Zr2O7+x (where Re represents a rare earth element, and x represents a number of 0.0 to 0.8) and with which an outside of the core is coated, the rare earth-zirconia based composite oxide comprising crystal particles having a pyrochlore structure, and the rare earth-zirconia based composite oxide having an average crystallite diameter of 3 to 9 nm.
Abstract:
A ceria-zirconia composite oxide includes at least one of lanthanum, yttrium, and praseodymium. A rate of a total content of the at least one rare earth element to a total content of cerium and zirconium is 0.1 at % to 4.0 at %. A content of the rare earth element present in near-surface regions, which are at a distance of less than 50 nm from surfaces of primary particles of the ceria-zirconia composite oxide, accounts for 90 at % or more of the total content of the rare earth element. An average particle size of the primary particles of the ceria-zirconia composite oxide is 2.2 μm to 4.5 μm. After a predetermined durability test, the intensity ratio I(14/29) of a diffraction line at 2θ=14.5° to a diffraction line at 2θ=29° and the intensity ratio I(28/29) of a diffraction line at 2θ=28.5° to the diffraction line at 2θ=29° respectively satisfy the following conditions: I(14/29)≧0.02, and I(28/29)≦0.08.
Abstract:
A ceria-zirconia-based composite oxide containing a composite oxide of ceria and zirconia is provided, in which primary particles having a particle diameter of 1.5 to 4.5 μm account for, on a particle number basis, at least 50% of all primary particles in the ceria-zirconia-based composite oxide, and the molar ratio of cerium to zirconium in the ceria-zirconia-based composite oxide is between 43:57 and 55:45.