摘要:
When an inspection apparatus of a semiconductor device repeatedly executes computation of prescribed area data, such as image processing for detecting defects, procedures for commanding, data load, computation, and data store need to be repeated the number of times of the computation. This may impose a limitation on the speeding up of the operation. In addition, when performing parallel computation by a high-capacity image processing system for handling minute images, a lot of processors are needed, resulting in an increase in cost. In order to solve the above-mentioned problems, in the invention, an inspection apparatus of a semiconductor device includes a data memory including an access section which is capable of reading and writing simultaneously, a plurality of numerical computation units, a connector for connecting the data memory and the numerical computation units, a controller for collectively controlling the contents of processing by the plurality of numerical computation units, another connector for connecting the numerical computation units and the controller, and a data transfer controller for controlling data transfer between the numerical computation units.
摘要:
When an inspection apparatus of a semiconductor device repeatedly executes computation of prescribed area data, such as image processing for detecting defects, procedures for commanding, data load, computation, and data store need to be repeated the number of times of the computation. This may impose a limitation on the speeding up of the operation. In addition, when performing parallel computation by a high-capacity image processing system for handling minute images, a lot of processors are needed, resulting in an increase in cost. In order to solve the above-mentioned problems, in the invention, an inspection apparatus of a semiconductor device includes a data memory including an access section which is capable of reading and writing simultaneously, a plurality of numerical computation units, a connector for connecting the data memory and the numerical computation units, a controller for collectively controlling the contents of processing by the plurality of numerical computation units, another connector for connecting the numerical computation units and the controller, and a data transfer controller for controlling data transfer between the numerical computation units.
摘要:
Semiconductor testing equipment according to the present invention comprises: an algorithmic pattern generator for generating a test pattern for testing a memory under test and applying the pattern to the memory under test; a comparator for comparing a response signal from the memory under test and an expected value from tho algorithmic pattern generator; a fail address acquisition part for storing an address of the memory under test (fail address) when a result compared by the comparator is failed; a fail address analysis part for analyzing the failed address and calculating the address to be repaired (repair address); and a cycle-pattern generator for redundancy processing for inserting the address to be repaired into a test pattern and applying the address to the memory under test, so that even when capacity of the semiconductor memory is increased, a fabrication yield thereof is raised by testing the memory after the packaging and by performing the redundancy processing of a defective.
摘要:
Semiconductor testing equipment according to the present invention comprises: an algorithmic pattern generator for generating a test pattern for testing a memory under test and applying the pattern to the memory under test; a comparator for comparing a response signal from the memory under test and an expected value from tho algorithmic pattern generator; a fail address acquisition part for storing an address of the memory under test (fail address) when a result compared by the comparator is failed; a fail address analysis part for analyzing the failed address and calculating the address to be repaired (repair address); and a cycle-pattern generator for redundancy processing for inserting the address to be repaired into a test pattern and applying the address to the memory under test, so that even when capacity of the semiconductor memory is increased, a fabrication yield thereof is raised by testing the memory after the packaging and by performing the redundancy processing of a defective.
摘要:
One illustrative embodiment includes materials and devices including an integrated hydrogen storage structure including a plurality of continuously connected thermally conductive elongated members, the elongated members including continuously connected openings between the elongated members; and, a metal hydride material contacting the elongated members and disposed within the connected openings and surrounding the elongated members.
摘要:
A hydrogen storage material has been developed that comprises a metal hydride material embedded into a carbon microstructure that generally exhibits a greater bulk thermal conductivity than the surrounding bulk metal hydride material.
摘要:
Both the reaction of hydride-forming compositions with hydrogen to form hydrides, and the decomposition of such hydrides to release hydrogen may be promoted electrochemically. These reactions may be conducted reversibly, and if performed in a suitable cell, the cell will serve as a hydrogen storage and release device.
摘要:
Provided is a configuration of a driver integrated circuit that can output a voltage exceeding the withstand voltage of a process, and that satisfies required apparatus performance (high speed and high voltage). A differential input circuit, a level shift circuit, and an output circuit are manufactured by the same process and divided and disposed on three or more chips with different substrate potentials (sub-potentials). By setting different applied voltages to the substrates of the chips, an output voltage greater than the process withstand voltage can be provided (see FIG. 2).
摘要:
A method, information processing system, and computer program product manage variable operand length instructions. At least one variable operand length instruction is received. The at least one variable operand length instruction is analyzed. A length of at least one operand in the variable operand length instruction is identified based on the analyzing. The at least one variable operand length instruction is organized into a set of unit of operations. The set of unit of operations are executed. The executing increases one or more performance metrics of the at least one variable operand length instruction.
摘要:
Photodiode arrays and methods of fabrication are provided. One photodiode array includes a silicon wafer having a first surface and an opposite second surface. The photodiode array also includes a plurality of refilled conductive vias through the silicon wafer, wherein the refilled conductive vias have a doping type different than the doping type of the substrate, and an interface between the refilled conductive vias and the substrate form diode junctions. The photodiode array further includes a patterned doped layer on the first surface overlapping the refilled conductive vias, wherein the patterned doped layer defines an array of photodiodes.