摘要:
A nitride semiconductor light-emitting device includes an n-type nitride semiconductor layer, a V pit generation layer, an intermediate layer, a multiple quantum well light-emitting layer, and a p-type nitride semiconductor layer provided in this order. The multiple quantum well light-emitting layer is a layer formed by alternately stacking a barrier layer and a well layer having a bandgap energy smaller than that of the barrier layer. A V pit is partly formed in the multiple quantum well light-emitting layer, and an average position of starting point of the V pit is located in the intermediate layer.
摘要:
A nitride semiconductor light-emitting device includes an n-type nitride semiconductor layer, a V pit generation layer, an intermediate layer, a multiple quantum well light-emitting layer, and a p-type nitride semiconductor layer provided in this order. The multiple quantum well light-emitting layer is a layer formed by alternately stacking a barrier layer and a well layer having a bandgap energy smaller than that of the barrier layer. A V pit is partly formed in the multiple quantum well light-emitting layer, and an average position of starting point of the V pit is located in the intermediate layer.
摘要:
A first P-type diffusion layer and a P-type semiconductor layer are provided on a silicon substrate, and two N-type diffusion layers are provided on a front surface of this P-type semiconductor layer to form two light receiving units. Three-layer translucent films, a first silicon oxide film, a silicon nitride film, and a second silicon oxide film are disposed on the N-type diffusion layers and on the P-type semiconductor layer between the two diffusion layers. Holes produced during a production process and distributed and captured in two interfaces between the three-layer translucent films can reduce a field intensity in the vicinity of the surface of the P-type semiconductor layer to below a conventional level and an inversion of a conductive type to reduce a leak current between the light receiving units accordingly.
摘要:
Provided is a nitride semiconductor laser device that is reduced in capacitance to have a better response. The nitride semiconductor laser device includes: an active layer; an upper cladding layer which is stacked above the active layer; a low dielectric constant insulating film which is stacked above the upper cladding layer; and a pad electrode which is stacked above the low dielectric constant insulating film.
摘要:
A light receiving device includes a silicon substrate, a first P type diffusion layer on the silicon substrate, and a P type semiconductor layer on the P type diffusion layer. On a surface part of the P type semiconductor layer, two N type diffusion layers as light receiving parts, and a second P type diffusion layer between the two N type diffusion layers are provided. On the P type semiconductor layer, an antireflection film structure composed of a first silicon oxide formed by thermal oxidation and a second silicon oxide formed by CVD is provided. A film thickness of the first silicon oxide is set at about 15 nm, thus a defect in a interface between the first silicon oxide and the P type semiconductor layer is prevented. A film thickness of the second silicon oxide is set at about 100 nm, thus a leak current between cathodes is prevented when a power supply voltage is applied for long period of time.
摘要:
A light receiving device includes a silicon substrate, a first P type diffusion layer on the silicon substrate, and a P type semiconductor layer on the P type diffusion layer. On a surface part of the P type semiconductor layer, two N type diffusion layers as light receiving parts, and a second P type diffusion layer between the two N type diffusion layers are provided. On the P type semiconductor layer, an antireflection film structure composed of a first silicon oxide formed by thermal oxidation and a second silicon oxide formed by CVD is provided. A film thickness of the first silicon oxide is set at about 15 nm, thus a defect in a interface between the first silicon oxide and the P type semiconductor layer is prevented. A film thickness of the second silicon oxide is set at about 100 nm, thus a leak current between cathodes is prevented when a power supply voltage is applied for long period of time.
摘要:
A nitride semiconductor laser chip that operates with reduced electric power consumption and helps achieve cost reduction has: an active layer formed of a nitride semiconductor; a nitride semiconductor layer formed above the active layer; a ridge portion formed in a part of the nitride semiconductor layer; and an electrically conductive film having a light-absorbing property and formed at least in a region outside the ridge portion above the nitride semiconductor layer. The ridge portion has a ridge width of 2 μm or more but 6 μm or less.
摘要:
A method for producing a nitride semiconductor laser light source is provided. The nitride semiconductor laser light source has a nitride semiconductor laser chip, a stem for mounting the laser chip thereon, and a cap for covering the laser chip. The laser chip is encapsulated in a sealed container composed of the stem and the cap. The method for producing this nitride semiconductor laser light source has a cleaning step of cleaning the surface of the laser chip, the stem, or the cap. In the cleaning step, the laser chip, the stem, or the cap is exposed with ozone or an excited oxygen atom, or baked by heat. The method also has, after the cleaning step, a capping step of encapsulating the laser chip in the sealed container composed of the stem and the cap. During the capping step, the cleaned surface of the laser chip, the stem, or the cap is kept clean. This method provides a long-life nitride semiconductor laser light source the light emission intensity of which is not easily reduced after a long period of use.
摘要:
A plurality of N-type diffusion layers are formed a specified distance apart on a P-type semiconductor layer. A P-type leak prevention layer formed between at least N-type diffusion layers prevents leaking between the diffusion layers. A dielectric film is formed in at least a light incident area on a P-type semiconductor layer including the diffusion layers and the leak prevention layer. Accordingly, provided are a split type light receiving element positively functioning as a split type light receiving element even when charge is accumulated in the dielectric film and having a uniform sensitivity throughout the entire area on a light receiving surface, and a circuit-built-in light receiving element and an optical disk device using the split type light receiving element.
摘要:
A nitride semiconductor laser chip that operates with reduced electric power consumption and helps achieve cost reduction has: an active layer formed of a nitride semiconductor; a nitride semiconductor layer formed above the active layer; a ridge portion formed in a part of the nitride semiconductor layer; and an electrically conductive film having a light-absorbing property and formed at least in a region outside the ridge portion above the nitride semiconductor layer. The ridge portion has a ridge width of 2 μm or more but 6 μm or less.