摘要:
A method of fabricating a normally “off” GaN heterostructure field effect transistor having a source and a drain including depositing a passivation layer patterned to cover a channel region between a source and a drain, forming a first opening in the passivation layer, the first opening for defining a gate area in the channel region and the first opening having a first length dimension along a direction of current flow between the source and the drain, and implanting ions in an implant area within the gate area, wherein the implant area has a second length dimension along the direction of current flow shorter than the first length dimension.
摘要:
The present invention relates to fabrication of enhancement mode and depletion mode High Electron Mobility Field Effect Transistors on the same die separated by as little as 10 nm. The fabrication method uses selective decomposition and selective regrowth of the Barrier layer and the Cap layer to engineer the bandgap of a region on a die to form an enhancement mode region. In these regions zero or more devices may be fabricated.
摘要:
The interface resistance between the source/drain and gate of an HFET may be significantly reduced by engineering the bandgap of the 2DEG outside a gate region such that the charge density is substantially increased. The resistance may be further reduced by using an n+GaN Cap layer over the channel layer and barrier layer such that a horizontal surface of the barrier layer beyond the gate region is covered by the n+GaN Cap layer. This technique is applicable to depletion and enhancement mode HFETs.
摘要:
A method of fabricating a GaN HEMT includes growing a first epitaxial layer on a substrate, growing a second epitaxial layer on the first epitaxial layer, growing a third epitaxial layer on the second epitaxial layer, depositing a first dielectric film on the third epitaxial layer, using dielectric films to form a first sidewall dielectric spacer, forming a sidewall gate adjacent the first sidewall dielectric spacer. The sidewall gate may be made to be less than 50 nm in length.
摘要:
A process for fabricating an integrated group III nitride structure comprising high electron mobility transistors (HEMTs) and Schottky diodes, and the resulting structure, are disclosed. Integration of vertical junction Schottky diodes is enabled, and the parasitic capacitance and resistance as well as the physical size of the diode are minimized. A process for fabricating an integrated group III nitride structure comprising double-heterostructure field effect transistors (DHFETs) and Schottky diodes and the resulting structure are also disclosed.
摘要:
A process and related product in which ohmic contacts are formed in High Electron Mobility Transistors (HEMTs) employing compound substrates such as gallium nitride. An improved device and an improvement to a process for fabrication of ohmic contacts to GaN/AlGaN HEMTs using a novel two step resist process to fabricate the ohmic contacts are described. This novel two-step process consists of depositing a plurality of layers having compounds of Group III V elements on a substrate; patterning and depositing a first photoresist on one of the layers; etching recessed areas into this layer; depositing ohmic metals on the recessed areas; removing the first photoresist; patterning and depositing a second photoresist, smaller in profile than the first photoresist, on the layer; depositing more ohmic metal on the layer allowing for complete coverage of the recessed areas; removing the second photoresist, and annealing the semiconductor structure.
摘要:
A method for fabricating heterojunction field effect transistors (HFET) and a family of HFET layer structures are presented. In the method, a step of depositing a HFET semiconductor structure onto a substrate is performed. Next, a photoresist material is deposited. Portions of the photoresist material are removed corresponding to source and drain pad pairs. A metal layer is deposited onto the structure, forming source pad and drain pad pairs. The photoresist material is removed, exposing the structure in areas other than the source and drain pad pairs. Each source and drain pad pair has a corresponding exposed area. The structure is annealed and devices are electrically isolated. The exposed area of each device is etched to form a gate recess and a gate structure is formed in the recess. Semiconductor layer structures for GaN/AlGaN HFETs are also presented.
摘要:
A process for fabricating an integrated group III nitride structure comprising high electron mobility transistors (HEMTs) and Schottky diodes, and the resulting structure, are disclosed. Integration of vertical junction Schottky diodes is enabled, and the parasitic capacitance and resistance as well as the physical size of the diode are minimized. A process for fabricating an integrated group III nitride structure comprising double-heterostructure field effect transistors (DHFETs) and Schottky diodes and the resulting structure are also disclosed.
摘要:
A method for fabricating a semiconductor device which protects the ohmic metal contacts and the channel of the device during subsequent high temperature processing steps is explained. An encapsulation layer is used to cover the channel and ohmic metal contacts. The present invention provides a substrate on which a plurality of semiconductor layers are deposited. The semiconductor layers act as the channel of the device. The semiconductor layers are covered with an encapsulation layer. A portion of the encapsulation layer and the plurality of semiconductor layers are removed, wherein ohmic metal contacts are deposited. The ohmic metal contacts are then annealed to help reduce their resistance. The encapsulation layer ensures that the ohmic metal contacts do not migrate during the annealing step and that the channel is not harmed by the high temperatures needed during the annealing step.
摘要:
A method for fabricating heterojunction field effect transistors (HFET) and a family of HFET layer structures are presented. In the method, a step of depositing a HFET semiconductor structure onto a substrate is performed. Next, a photoresist material is deposited. Portions of the photoresist material are removed corresponding to source and drain pad pairs. A metal layer is deposited onto the structure, forming source pad and drain pad pairs. The photoresist material is removed, exposing the structure in areas other than the source and drain pad pairs. Each source and drain pad pair has a corresponding exposed area. The structure is annealed and devices are electrically isolated. The exposed area of each device is etched to form a gate recess and a gate structure is formed in the recess. Semiconductor layer structures for GaN/AlGaN HFETs are also presented.