摘要:
A transistor device with a recessed gate structure is provided. In some embodiments, the transistor device comprises a semiconductor substrate comprising a device region surrounded by an isolation structure and a pair of source/drain regions disposed in the device region and laterally spaced apart one from another in a first direction. A gate structure overlies the device region and the isolation structure and arranged between the pair of source/drain regions. The gate structure comprises a pair of recess regions disposed on opposite sides of the device region in a second direction perpendicular to the first direction. A channel region is disposed in the device region underneath the gate structure. The channel region has a channel width extending in the second direction from one of the recess regions to the other one of the recess regions.
摘要:
Some embodiments of the present disclosure relate to deceasing off-state leakage current within a metal-oxide-semiconductor field-effect transistor (MOSFET). The MOSFET includes source and drain regions. The source and drain regions are separated by a channel region. A gate is arranged over the channel region. The gate has a first gate region adjacent to the source region and a second gate region adjacent to the drain region. The first gate region is selectively doped adjacent the source region. The second gate region is undoped or lightly-doped. The undoped or lightly-doped second gate region reduces the electric field between the gate and the drain region, and hence reduces a gate induced drain leakage (GIDL) current between the gate and drain region. The undoped or lightly-doped region of the gate can reduce the GIDL current within the MOSFET by about three orders of magnitude. Other embodiments are also disclosed.
摘要:
Some embodiments of the present disclosure relate to a method of forming a transistor. The method includes forming a gate dielectric over a substrate and forming a gate over the gate dielectric. The gate includes polysilicon extending between a first outermost sidewall and a second outermost sidewall of the gate. A mask is formed over the gate. The mask exposes a first gate region extending to the first outermost sidewall and covers a second gate region extending between the first gate region and the second outermost sidewall. Dopants are selectively implanted into the first gate region according to the mask. Source and drain regions are formed within the substrate. The source region and the drain region are asymmetric with respect to an interface of the first gate region and the second gate region and extend to substantially equal distances past the first and second outermost sidewalls of the gate, respectively.
摘要:
A transistor device with a recessed gate structure is provided. In some embodiments, the transistor device comprises a semiconductor substrate comprising a device region surrounded by an isolation structure and a pair of source/drain regions disposed in the device region and laterally spaced apart one from another in a first direction. A gate structure overlies the device region and the isolation structure and arranged between the pair of source/drain regions. The gate structure comprises a pair of recess regions disposed on opposite sides of the device region in a second direction perpendicular to the first direction. A channel region is disposed in the device region underneath the gate structure. The channel region has a channel width extending in the second direction from one of the recess regions to the other one of the recess regions.
摘要:
Some embodiments of the present disclosure relate to deceasing off-state leakage current within a metal-oxide-semiconductor field-effect transistor (MOSFET). The MOSFET includes source and drain regions. The source and drain regions are separated by a channel region. A gate is arranged over the channel region. The gate has a first gate region adjacent to the source region and a second gate region adjacent to the drain region. The first gate region is selectively doped adjacent the source region. The second gate region is undoped or lightly-doped. The undoped or lightly-doped second gate region reduces the electric field between the gate and the drain region, and hence reduces a gate induced drain leakage (GIDL) current between the gate and drain region. The undoped or lightly-doped region of the gate can reduce the GIDL current within the MOSFET by about three orders of magnitude. Other embodiments are also disclosed.
摘要:
Some embodiments of the present disclosure are directed to an embedded flash (e-flash) memory device that includes a flash memory cell and a metal-oxide-semiconductor field-effect transistor (MOSFET). The flash memory cell includes a control gate disposed over a floating gate. The MOSFET includes a logic gate disposed over a gate dielectric. The floating gate and a first gate layer of the logic gate are simultaneously formed with a first polysilicon layer. A high temperature oxide (HTO) is then formed over the floating gate with a high temperature process, while the first gate layer protects the gate dielectric from degradation effects due to the high temperature process. A second gate layer of the logic gate is then formed over the first gate layer by a second polysilicon layer. The first and second gate layers collectively form a logic gate of the MOSFET.
摘要:
Various embodiments of the present disclosure are directed towards a semiconductor device. The semiconductor device comprises a source region and a drain region in a substrate and laterally spaced. A gate stack is over the substrate and between the source region and the drain region. The drain region includes two or more first doped regions having a first doping type in the substrate. The drain region further includes one or more second doped regions in the substrate. The first doped regions have a greater concentration of first doping type dopants than the second doped regions, and each of the second doped regions is disposed laterally between two neighboring first doped regions.
摘要:
Some embodiments of the present disclosure relate to a method of forming a transistor. The method includes forming a gate dielectric over a substrate and forming a gate over the gate dielectric. The gate includes polysilicon extending between a first outermost sidewall and a second outermost sidewall of the gate. A mask is formed over the gate. The mask exposes a first gate region extending to the first outermost sidewall and covers a second gate region extending between the first gate region and the second outermost sidewall. Dopants are selectively implanted into the first gate region according to the mask. Source and drain regions are formed within the substrate. The source region and the drain region are asymmetric with respect to an interface of the first gate region and the second gate region and extend to substantially equal distances past the first and second outermost sidewalls of the gate, respectively.
摘要:
Some embodiments of the present disclosure are directed to an embedded flash (e-flash) memory device that includes a flash memory cell and a metal-oxide-semiconductor field-effect transistor (MOSFET). The flash memory cell includes a control gate disposed over a floating gate. The MOSFET includes a logic gate disposed over a gate dielectric. The floating gate and a first gate layer of the logic gate are simultaneously formed with a first polysilicon layer. A high temperature oxide (HTO) is then formed over the floating gate with a high temperature process, while the first gate layer protects the gate dielectric from degradation effects due to the high temperature process. A second gate layer of the logic gate is then formed over the first gate layer by a second polysilicon layer. The first and second gate layers collectively form a logic gate of the MOSFET.
摘要:
A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate having a top surface, a source region, and a drain region. The semiconductor device structure includes a gate structure over the top surface and extending into the semiconductor substrate. The gate structure in the semiconductor substrate is between the source region and the drain region and separates the source region from the drain region. The semiconductor device structure includes an isolation structure in the semiconductor substrate and surrounding the source region, the drain region, and the gate structure in the semiconductor substrate.