摘要:
An apparatus and method for providing a phase noise built-in self test (BIST) circuit are disclosed herein. In some embodiments, a method and apparatus for forming a multi-stage noise shaping (MASH) type high-order delta sigma (ΔΣ) time-to-digital converter (TDC) are disclosed. In some embodiments, an apparatus includes a plurality of first-order ΔΣ TDCs formed in an integrated circuit (IC) chip, wherein each of the first-order ΔΣ DCs are connected to one another in a MASH type configuration to provide the MASH type high-order ΔΣ TDC, wherein the MASH type high-order ΔΣ TDC is configured to measure the phase noise of a device under text (DUT).
摘要:
An IC degradation sensor is disclosed. The IC degradation management sensor includes an odd number of first logic gates electrically connected in a ring oscillator configuration, each first logic gate having an input and an output. Each first logic gate further includes a first PMOS transistor, a first NMOS transistor and a second logic gate having an input and an output. The input of the second logic gate is the input of the first logic gate, and the drains of the first PMOS transistor and the first NMOS transistor are electrically connected to the output of the second logic gate, and the output of the second logic gate is the output of the first logic gate.
摘要:
A realignment ring-cell circuit is disclosed. The circuit includes a single-to-differential unit, an OR gate, an AND gate, a first P-type metal-oxide-semiconductor transistor, and a first N-type metal-oxide-semiconductor transistor. The single-to-differential unit has an input configured to receive a realignment signal, a first output for outputting a first differential output and a second output for outputting a second differential output. The first output for outputting is a first input to the OR gate. The second output for outputting is a first input to the AND gate. A gate of the P-type metal-oxide-semiconductor transistor is electrically connected to an output of the OR gate. A gate of the N-type metal-oxide-semiconductor transistor is electrically connected to an output of the AND gate. A drain of the P-type metal-oxide-semiconductor transistor and a drain of the N-type metal-oxide-semiconductor transistor are electrically connected to each other and are further electrically connected to a second input of the OR gate and a second input of the AND gate.
摘要:
A phase-lock-loop (PLL) circuit includes a reference PLL circuit configured to generate a reference clock signal; a single clock tree circuit, coupled to the reference PLL circuit, and configured to distribute the reference clock signal; and a plurality of designated PLL circuits coupled to the clock tree circuit, wherein the designated PLL circuits are each configured to receive the distributed reference clock signal through the single clock tree circuit and provide a respective clock signal based on the reference clock signal.
摘要:
A circuit having a tracking loop and a realignment loop is disclosed. The circuit includes: a phase frequency detector (PFD) module for comparing a phase difference of a first input signal and a second input signal; a pump module for converting PFD phase error to charge, wherein the pump module further comprises a low pass filter (LPF); an adjustable realignment module for adjusting a realignment strength, the adjustable realignment module receives a first plurality of inputs from the PFD module, the adjustable realignment module transmits a second plurality of outputs to the pump module; and a ring oscillator unit, the ring oscillator unit receives a first input from the pump module and a second input from the adjustable realignment module, and based on the first and second inputs produces a feedback signal.
摘要:
A die stack comprises a first integrated circuit (IC) die having at least a first device comprising a first source, a first drain and a first gate electrode above a first channel region between the first source and the first drain. A second IC die has at least a second device comprising a second source, a second drain and a second gate electrode above a second channel region between the second source and the second drain. The second gate electrode is connected to the first gate electrode by a path including a first through substrate via (TSV), the second drain connected to the first source by a path including a second TSV.
摘要:
An apparatus and method for providing a phase noise built-in self test (BIST) circuit are disclosed herein. In some embodiments, a method and apparatus for forming a multi-stage noise shaping (MASH) type high-order delta sigma (ΔΣ) time-to-digital converter (TDC) are disclosed. In some embodiments, an apparatus includes a plurality of first-order ΔΣ TDCs formed in an integrated circuit (IC) chip, wherein each of the first-order ΔΣ TDCs are connected to one another in a MASH type configuration to provide the MASH type high-order ΔΣ TDC, wherein the MASH type high-order ΔΣ TDC is configured to measure the phase noise of a device under text (DUT).
摘要:
A ring oscillator is provided. The ring oscillator includes a pseudo pass-gate inverter, a third transistor, a fourth transistor and a delay chain. The pseudo pass-gate inverter includes a first transistor and a second transistor in series. The third transistor is connected in series with the pseudo pass-gate inverter. The drain of the fourth transistor is connected to an output of the pseudo pass-gate inverter. The gate of the fourth transistor is connected to the gate of the third transistor to receive the realignment signal. The delay chain includes a plurality of delay cells. An input of the delay chain is connected to the output of the pseudo pass-gate inverter. When the realignment signal is in a realignment state, the third transistor is turned off, the fourth transistor is turned on.
摘要:
A system and method is disclosed for adaptively adjusting a duty cycle of a signal between a first and second chip in a 3D architecture/stack for adaptively calibrating a chip in a 3D architecture/stack. In one embodiment, the system includes a first chip and a second chip located within the 3D chip stack, wherein the first chip generates a calibration signal, the second chip receives the calibration signal and compares it to a reference signal to generate a comparison signal that further compared to a reference duty signal to generate a reference duty comparison signal, that is then provided to the first chip to generate a drive signal that adjusts a duty cycle of the calibration signal.
摘要:
A system and method is disclosed for adaptively adjusting a driving strength of a signal between a first and second chip in a 3D architecture/stack. This may be used to adaptively calibrate a chip in a 3D architecture/stack. The system may include a transmission circuit on one chip and a receiver circuit on another chip. Alternatively, the system may include a transmission and receiver circuit on just one chip.