摘要:
High voltage semiconductor devices are described herein. An exemplary semiconductor device includes a substrate, a first doped region disposed in the substrate and doped with a first doping polarity, and a second doped region disposed in the substrate and horizontally outside the first doped region. The second doped region is doped with a second doping polarity opposite to the first doping polarity. The semiconductor device further includes a third doped region disposed completely within the first doped region. The third doped region is doped with the second doping polarity. The semiconductor device further includes a first isolation structure disposed over the first doped region and spaced apart from the second doped region and the third doped region, a second isolation structure disposed over the first doped region and the third doped region, and a resistor disposed over the first isolation structure.
摘要:
Various embodiments of the present disclosure are directed towards a method for forming a semiconductor structure, the method includes forming a buffer layer over a substrate. An active layer is formed on the buffer layer. A top electrode is formed on the active layer. An etch process is performed on the buffer layer and the substrate to define a plurality of pillar structures. The plurality of pillar structures include a first pillar structure laterally offset from a second pillar structure. At least portions of the first and second pillar structures are spaced laterally between sidewalls of the top electrode.
摘要:
Various embodiments of the present application are directed towards an integrated circuit (IC) in which a high voltage metal-oxide-semiconductor (HVMOS) device is integrated with a high voltage junction termination (HVJT) device. In some embodiments, a first drift well and a second drift well are in a substrate. The first and second drift wells border in a ring-shaped pattern and have a first doping type. A peripheral well is in the substrate and has a second doping type opposite the first doping type. The peripheral well surrounds and separates the first and second drift wells. A body well is in the substrate and has the second doping type. Further, the body well overlies the first drift well and is spaced from the peripheral well by the first drift well. A gate electrode overlies a junction between the first drift well and the body well.
摘要:
A device includes a first transistor having a first source terminal, a first drain terminal, and a first gate terminal; and a second transistor having a second source terminal, a second drain terminal, and a second gate terminal. The second source terminal is coupled to the first gate terminal and the first source terminal is coupled to the second gate terminal. The first transistor has a first threshold voltage, and the second transistor has a second threshold voltage different from the first threshold voltage.
摘要:
In some embodiments, a semiconductor structure includes a first device and a second device. The first device has a first surface. The first device includes a first active region defined by a first material system. The second device has a second surface. The second surface is coplanar with the first surface. The second device includes a second active region defined by a second material system. The second material system is different from the first material system.
摘要:
A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), and more particularly an insulated gate bipolar junction transistor (IGBT), is disclosed. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
摘要:
A device includes a p-well region, and a first High-Voltage N-type Well (HVNW) region and a second HVNW region contacting opposite edges of the p-well region. A P-type Buried Layer (PBL) has opposite edges in contact with the first HVNW region and the second HVNW region. An n-type buried well region is underlying the PBL. The p-well region and the n-type buried well region are in contact with a top surface and a bottom surface, respectively, of the PBL. The device further includes a n-well region in a top portion of the p-well region, an n-type source region in the n-well region, a gate stack overlapping a portion of the p-well region and a portion of the second HVNW region, and a channel region under the gate stack. The channel region interconnects the n-well region and the second HVNW region.
摘要:
A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), and a method of making it are provided in this disclosure. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
摘要:
Provided is a high voltage semiconductor device that includes a PIN diode structure formed in a substrate. The PIN diode includes an intrinsic region located between a first doped well and a second doped well. The first and second doped wells have opposite doping polarities and greater doping concentration levels than the intrinsic region. The semiconductor device includes an insulating structure formed over a portion of the first doped well. The semiconductor device includes an elongate resistor device formed over the insulating structure. The resistor device has first and second portions disposed at opposite ends of the resistor device, respectively. The semiconductor device includes an interconnect structure formed over the resistor device. The interconnect structure includes: a first contact that is electrically coupled to the first doped well and a second contact that is electrically coupled to a third portion of the resistor located between the first and second portions.
摘要:
Various embodiments of the present disclosure are directed towards a method for forming a semiconductor structure, the method includes forming a buffer layer over a substrate. An active layer is formed on the buffer layer. A top electrode is formed on the active layer. An etch process is performed on the buffer layer and the substrate to define a plurality of pillar structures. The plurality of pillar structures include a first pillar structure laterally offset from a second pillar structure. At least portions of the first and second pillar structures are spaced laterally between sidewalls of the top electrode.