摘要:
A method of processing a substrate has the following processes. After depositing a thin film onto a substrate by a CVD method, the front surface of the substrate is brought close to a gas supply surface of a gas supply mechanism to have a desired interval without making contact between the front surface and the gas supply surface. Afterwards, an etching gas is supplied into a back space of the substrate to generate plasma there, and further a purge gas is also supplied into a space between the gas supply surface and the substrate so that the purge gas flows into the back space through a peripheral-edge region of the substrate. This purge gas prevents radicals included in the plasma from diffusing into the space between the gas supply surface and the substrate.
摘要:
A method of depositing a thin film on a substrate by plasma-enhanced CVD is provided. The method includes introducing H.sub.2 or H.sub.2 and N.sub.2 into a plasma-enhanced CVD reactor; generating a plasma in the reactor; introducing a reaction gas comprising TiCl.sub.4, silane, and either H.sub.2 or H.sub.2 and N.sub.2 into the reactor; and depositing a Ti film or a TiN film containing Si on a substrate in the reactor.
摘要:
A CVD mechanism includes a reactor, a substrate holder, a heating apparatus for heating the substrate holder, a reaction gas supply plate for supplying reaction gas into the reactor, and at least two cylinders disposed in a concentric form on the substrate-facing surface of the reaction gas supply plate so that reaction gas is supplied from an inward portion of each cylinder in the reaction gas supply plate. A power supply mechanism for supplying power to the reaction gas supply plate and the substrate holder, and ring magnets disposed in the upper and lower portions of the reactor are provided so that magnetic lines of force passing through a plasma space are generated by the facing magnetic pole parts of the respective magnets.
摘要:
A substrate processing device includes a reactor equipped with a substrate holder and a gas feed electrode facing the substrate holder, a pump mechanism for pumping out an interior of the reactor, a reaction gas feed mechanism for introducing a reaction gas through the gas feed electrode into the interior of said reactor, a high frequency power source for applying a high frequency power to said gas feed electrode, a connecting port formed in a sidewall of said reactor, the pump mechanism is connected to the connecting port formed in the sidewall of the reactor, and a space between the gas feed electrode and the substrate holder is set so that a conductance between the gas feed electrode and the substrate holder is lower than a conductance between the sidewall of the reactor and the gas feed electrode.
摘要:
A heater is used in a CVD apparatus. In the CVD apparatus, reactive gas is supplied through a reactive gas supply plate to a substrate on a substrate holder to deposit a film on the substrate, and a purge gas supply passage is formed by placing a shield mechanism around the substrate holder, the shield mechanism including a ring plate disposed close to the outer periphery of the substrate. During film deposition, purge gas supplied through the purge gas supply passage is blown off from a clearance between the substrate and the ring plate, thereby preventing a film from being deposited on the rear surface of the substrate or the like. A heating element is arranged in a space in the purge gas supply passage close to but not contacting the substrate holder. The heating element is preferably a ceramic heater.
摘要:
An electrode unit of a thermal CVD apparatus is used to generate plasma discharge for an in-situ cleaning process. The electrode unit is configured by a substrate holder and a shield member connected to a high frequency power supply, the gas supply section electrically grounded, and an auxiliary electrode disposed in the gas supply section. In a film deposition process, a reactive gas is supplied from the gas supply section, and the reactive gas is excited in a space in front of a substrate to deposit a thin film onto the substrate. In a periodical in-situ cleaning process, a cleaning gas is supplied from the gas supply section and a cleaning discharge is generated to remove unwanted films deposited on the substrate holder and the shield member. The auxiliary electrode causes the cleaning discharge to be concentrated in a space around unwanted films.
摘要:
A process for forming a thin film by chemical vapor deposition which comprises repeating a substrate processing step on one or more substrates placed inside a reaction chamber by introducing a reaction gas inside the reaction chamber. The process includes a step of introducing a passivation gas or the like for passivating the surface of a thin film deposited on the fixing jig or other peripheral members between substrate processing steps. The passivation gas is, for example, an adsorbent gas or an oxidizing gas. More specifically, an example of an adsorbent gas is a mixture of an inert gas and from 0.1 to 10% of NH.sub.3 gas or SiH.sub.2 Cl.sub.2 gas, and an example of an oxidizing gas is a mixture of an inert gas and at least one selected from the group of oxygen, nitrogen, monoxide, and nitrogen dioxide. The inert gas may also be replaced with N.sub.2 gas.
摘要:
In a CVD processing system for depositing a blanket tungsten film, a distinct shadow is formed without causing any micro-peeling when the substrate fixture is separated from the substrate so as to prevent any blanket tungsten from being deposited on SiO.sub.2, thus reducing the occurrence of fine dust particles. A CVD processing system for depositing a blanket tungsten film, includes a susceptor (4); a ring chuck (9) for affixing the peripheral portion of a substrate (3) on the susceptor; reactive gas supply mechanisms (17, 18 and 19) for supplying reactive gas; and an exhaust mechanism (2) for exhausting unreacted gas and the like, wherein: the ring chuck has at least three point contact members (10) in contact with the peripheral portion of the substrate; the point contact members are provided at positions outside the inner periphery of the ring chuck; a gap (11) is formed at the point contact members between the ring chuck and the substrate; and purge gas supply mechanisms (20 and 21) are provided to blow off purge gas through the gap in order to prevent reactive gas from entering the gap (11). A ratio of the size of the gap to the flow rate of purge gas is set to such an optimum value as to satisfy a condition in which the position of the peripheral portion of the thin film coincides with the position of the inner periphery of the ring chuck.
摘要:
The present invention provides a substrate processing apparatus having improved temperature distribution on a block heater and improved productivity. The substrate processing apparatus includes a reactor having an exhaust unit to form a vacuum environment therein for processing a surface of a substrate, a support member provided in the reactor, and gas introduction units for introducing reactive gases into the reactor, the substrate support member including a block heater. The block heater has upper, intermediate and lower members, which are placed one over another, the faying surfaces of the respective members being joined by diffusion bonding. A heating member is provided between the intermediate and lower members, and purge gas passages are formed between the intermediate and upper members.
摘要:
In a CVD processing system for depositing a blanket tungsten film, a distinct shadow is formed without causing any micro-peeling when the substrate fixture is separated from the substrate so as to prevent any blanket tungsten from being deposited on SiO.sub.2, thus reducing the occurrence of fine dust particles. A CVD processing system for depositing a blanket tungsten film, includes a susceptor (4); a ring chuck (9) for affixing the peripheral portion of a substrate (3) on the susceptor; reactive gas supply mechanisms (17, 18 and 19) for supplying reactive gas; and an exhaust mechanism (2) for exhausting unreacted gas and the like, wherein: the ring chuck has at least three point contact members (10) in contact with the peripheral portion of the substrate; the point contact members are provided at positions outside the inner periphery of the ring chuck; a gap (11) is formed at the point contact members between the ring chuck and the substrate; and purge gas supply mechanisms (20 and 21) are provided to blow off purge gas through the gap in order to prevent reactive gas from entering the gap (11). A ratio of the size of the gap to the flow rate of purge gas is set to such an optimum value as to satisfy a condition in which the position of the peripheral portion of the thin film coincides with the position of the inner periphery of the ring chuck.