Abstract:
A pattern formation substrate comprising a substrate having thereon a hydrophobic region exhibiting repellency to liquid drops and a hydrophilic line exhibiting affinity with liquid drops. The hydrophilic line has such a surface treatment that upon landing of a liquid drop thereon, the liquid drop moves in the arrowed direction. Thus, attachment of liquid drops to regions to which liquid drops should not be adhered can be prevented, thereby enabling forming a pattern of desired characteristics.
Abstract:
A manufacturing method of a thin film transistor of the present invention includes the steps of (i) forming an electrode formation area in which a source electrode and a drain electrode are formed by applying a droplet of an electrode raw material, (ii) applying the droplet of the electrode raw material on drop-on positions located off a forming area of a semiconductor layer and in the electrode formation area, and (iii) forming the source electrode and the drain electrode in the electrode formation area. With this arrangement, it is possible to surely prevent adherence of a splash droplet on a channel section between each electrode, in forming the source electrode and the drain electrode by applying the droplet of the electrode raw material.
Abstract:
A pattern forming method of the present invention includes the steps of forming, on a substrate before droplets are ejected onto the substrate, a water repelling area, in which a contact angle between the droplet and the target surface is a first contact angle, and a water attracting line, which is adjacent to the water repelling area and in which a second contact angle is smaller than the first contact angle and which is to be the pattern to be formed; and landing droplets onto the target surface such that part of the droplet landed is in a water repelling area and part of the droplet landed is in a water attracting line, the equation (1) is satisfied, D≦Lx{1+2(cos θ2−cos θ1)} (1) where D is a droplet diameter, L is a pattern width, θ1 is a first contact angle, and θ2 is a second contact angle. By decreasing the number of discharged droplets, it is possible to prevent increase of a tact time and decrease of an inkjet operating life.
Abstract:
A manufacturing method of a thin film transistor of the present invention includes the steps of (i) forming an electrode formation area in which a source electrode and a drain electrode are formed by applying a droplet of an electrode raw material, (ii) applying the droplet of the electrode raw material on drop-on positions located off a forming area of a semiconductor layer and in the electrode formation area, and (iii) forming the source electrode and the drain electrode in the electrode formation area. With this arrangement, it is possible to surely prevent adherence of a splash droplet on a channel section between each electrode, in forming the source electrode and the drain electrode by applying the droplet of the electrode raw material.
Abstract:
A pattern formation substrate comprising a substrate having thereon a hydrophobic region exhibiting repellency to liquid drops and a hydrophilic line exhibiting affinity with liquid drops. The hydrophilic line has such a surface treatment that upon landing of a liquid drop thereon, the liquid drop moves in the arrowed direction. Thus, attachment of liquid drops to regions to which liquid drops should not be adhered can be prevented, thereby enabling forming a pattern of desired characteristics.
Abstract:
A manufacturing method of a thin film transistor of the present invention includes the steps of (i) forming an electrode formation area in which a source electrode and a drain electrode are formed by applying a droplet of an electrode raw material, (ii) applying the droplet of the electrode raw material on drop-on positions located off a forming area of a semiconductor layer and in the electrode formation area, and (iii) forming the source electrode and the drain electrode in the electrode formation area. With this arrangement, it is possible to surely prevent adherence of a splash droplet on a channel section between each electrode, in forming the source electrode and the drain electrode by applying the droplet of the electrode raw material.
Abstract:
A pattern forming method of the present invention includes the steps of forming, on a substrate before droplets are ejected onto the substrate, a water repelling area, in which a contact angle between the droplet and the target surface is a first contact angle, and a water attracting line, which is adjacent to the water repelling area and in which a second contact angle is smaller than the first contact angle and which is to be the pattern to be formed; and landing droplets onto the target surface such that part of the droplet landed is in a water repelling area and part of the droplet landed is in a water attracting line, the equation (1) is satisfied, D≦L×{1+2(cos θ2−cos θ1)} (1) where D is a droplet diameter, L is a pattern width, θ1 is a first contact angle, and θ2 is a second contact angle. By decreasing the number of discharged droplets, it is possible to prevent increase of a tact time and decrease of an inkjet operating life.
Abstract:
A TFT array substrate includes a thin film transistor section in which a gate electrode is formed on a substrate, and a semiconductor layer is formed on the gate electrode via a gate insulation layer. The semiconductor layer of this TFT array substrate has a shape formed by dropping a droplet. Accordingly, it is possible to directly forming a semiconductor layer, or a resist layer for forming the semiconductor layer, by dropping a droplet(s). On this account, the present invention allows the use of an inkjet method, thus reducing costs and numbers of manufacturing processes.
Abstract:
The present invention provides a display panel with a flat plate in which a member partially provided with a light blocking part is disposed in front of a display panel, and a curable resin therebetween is sufficiently cured even in an area behind the light blocking part. The display panel with a flat plate of the present invention includes: a flat plate provided with a light passing part and a light blocking part; a display panel; and an adhesive layer between the flat plate and the display panel, the adhesive layer being a cured resin layer obtainable by polymerization involving at least one reactive component selected from the group consisting of a (meth)acrylate oligomer, a bicyclic ring-containing (meth)acrylate monomer, and a hydroxyl group-containing (meth)acrylate monomer, a peroxide component, and a primer as reaction materials.
Abstract:
A display device is provided in which reduction of reflected light is realized. Also a multilayer substrate is provided in which light reflectance is reduced even when the substrate has a plurality of layers that differ in refractive index from each other. In the display device of one embodiment, the reflectance of light reflected by the internal structure, of light incident on the internal structure through a display screen, is less than 1.0%. The multilayer substrate of one embodiment includes a first layer and a second layer disposed adjacently to the first layer. The refractive index of the second layer varies continuously from an interface where the second layer is adjacent to the first layer in a direction from the first layer, with the variation being started at a value of the refractive index at the interface where the first layer is adjacent to the second layer.