摘要:
The present invention provides a manufacturing method of a high performance active matrix substrate at a high throughput with a less expensive apparatus, and an image display device using the active matrix substrate. On a stage moving in the short axis direction X and long axis direction Y on a rail, a glass substrate is carried, which has an amorphous silicon semiconductor film formed. Polycrystallized and large grain silicon film may be obtained by intensity modulating the pulsed laser beam in a line beam shape by means of a phase shift mask with a periodicity in the long axis direction Y of the laser beam, moving the laser beam randomly in the modulation direction of the amorphous silicon semiconductor film formed on the glass substrate to expose to crystallize the film. The image display device may incorporate an active matrix substrate having active elements such as thin film transistors formed by this silicon film.
摘要:
The present invention provides a manufacturing method of a high performance active matrix substrate at a high throughput with a less expensive apparatus, and an image display device using the active matrix substrate. On a stage moving in the short axis direction X and long axis direction Y on a rail, a glass substrate is carried, which has an amorphous silicon semiconductor film formed. Polycrystallized and large grain silicon film may be obtained by intensity modulating the pulsed laser beam in a line beam shape by means of a phase shift mask with a periodicity in the long axis direction Y of the laser beam, moving the laser beam randomly in the modulation direction of the amorphous silicon semiconductor film formed on the glass substrate to expose to crystallize the film. The image display device may incorporate an active matrix substrate having active elements such as thin film transistors formed by this silicon film.
摘要:
The present invention provides a manufacturing method of a high performance active matrix substrate at a high throughput with a less expensive apparatus, and an image display device using the active matrix substrate. On a stage moving in the short axis direction X and long axis direction Y on a rail, a glass substrate is carried, which has an amorphous silicon semiconductor film formed. Polycrystallized and large grain silicon film may be obtained by intensity modulating the pulsed laser beam in a line beam shape by means of a phase shift mask with a periodicity in the long axis direction Y of the laser beam, moving the laser beam randomly in the modulation direction of the amorphous silicon semiconductor film formed on the glass substrate to expose to crystallize the film. The image display device may incorporate an active matrix substrate having active elements such as thin film transistors formed by this silicon film.
摘要:
A surface roughness of a polycrystalline semiconductor film to be formed by a laser annealing method is reduced. A transmittance distribution filter is disposed at the optical system of a laser annealing apparatus. The transmittance distribution filter controls an irradiation light intensity distribution along a scanning direction of a substrate formed with an amorphous silicon semiconductor thin film to have a distribution having an energy part equal to or higher than a fine crystal threshold on a high energy light intensity side and an energy part for melting and combining only a surface layer. This transmittance distribution filter is applied to an excimer laser annealing method, a phase shift stripe method or an SLS method respectively using a general line beam to thereby reduce the height of protrusions on a polycrystalline surface.
摘要:
A surface roughness of a polycrystalline semiconductor film to be formed by a laser annealing method is reduced. A transmittance distribution filter is disposed at the optical system of a laser annealing apparatus. The transmittance distribution filter controls an irradiation light intensity distribution along a scanning direction of a substrate formed with an amorphous silicon semiconductor thin film to have a distribution having an energy part equal to or higher than a fine crystal threshold on a high energy light intensity side and an energy part for melting and combining only a surface layer. This transmittance distribution filter is applied to an excimer laser annealing method, a phase shift stripe method or an SLS method respectively using a general line beam to thereby reduce the height of protrusions on a polycrystalline surface.
摘要:
A surface roughness of a polycrystalline semiconductor film to be formed by a laser annealing method is reduced. A transmittance distribution filter is disposed at the optical system of a laser annealing apparatus. The transmittance distribution filter controls an irradiation light intensity distribution along a scanning direction of a substrate formed with an amorphous silicon semiconductor thin film to have a distribution having an energy part equal to or higher than a fine crystal threshold on a high energy light intensity side and an energy part for melting and combining only a surface layer. This transmittance distribution filter is applied to an excimer laser annealing method, a phase shift stripe method or an SLS method respectively using a general line beam to thereby reduce the height of protrusions on a polycrystalline surface.
摘要:
The generation of a projecting intensity distribution in an irradiation laser beam used for forming a polycrystalline semiconductor film is prevented by irradiating the laser beam onto an amorphous semiconductor film to crystallize it while it is being scanned. A dog-ear removing filter for eliminating diffracted light that occurs at boundaries of lenses and acts as a cause of development of dog-ears in the light intensity distribution is disposed in an optical system to cause the light intensity distribution in the irradiation laser beam to be uniform. As a result, by removing the dog ear distributions, the necessity for making the light intensity distribution of the laser beam blur is eliminated, and, consequently, a distribution of high energy efficiency can be maintained and the throughput is improved.
摘要:
A switching power supply device includes a transformer for voltage conversion, a synchronous rectification MOS transistor, and a secondary side control circuit. The synchronous rectification MOS transistor is connected in series to a secondary side coil of the transformer. The secondary side control circuit performs on/off control of the synchronous rectification MOS transistor based on a drain voltage of the synchronous rectification MOS transistor. The secondary side control circuit includes a peak period detection circuit and a determination reference voltage generation circuit. The peak period detection circuit detects a peak period of the drain voltage. The determination reference voltage generation circuit generates a reference voltage to be used as a reference for determining the peak period based on a voltage in the peak period. The peak period detection circuit detects the peak period based on the drain voltage and on the reference voltage.
摘要:
Provided is a metal microparticle dispersion including metal microparticles, a polymeric dispersant and a dispersion medium, wherein an average primary particle diameter of the metal microparticles is 0.001 to 0.5 μm; the polymeric dispersant has a polyester skeleton in at least one of a principal chain and a side chain thereof; or the polymeric dispersant has a polyether skeleton in at least one of a principal chain and a side chain thereof; and a content of the above polymeric dispersant is 0.1 to 100 parts by mass based on a content of 100 parts by mass of the metal microparticles. Further, provided is a production process for an electrically conductive substrate, and an electrically conductive substrate produced by the above production process is provided.
摘要:
A paper sheet recognition apparatus that recognizes a paper sheet based on optical characteristics of the paper sheet is proposed. The paper sheet recognition apparatus includes at least one light source that emits a light toward the paper sheet; a light-guiding member that receives any of reflected lights reflected from plural regions on the paper sheet and transmitted lights that have passed through plural regions on the paper sheet because of emission of the light on the paper sheet from the light source, condenses the received lights, and outputs the condensed light from a light outputting section; an optical processing unit that generates spectral distribution from the condensed light output from the light outputting section of the light-guiding member; and a recognition processing unit that recognizes the paper sheet based on a feature of the spectral distribution generated by the optical processing unit.