摘要:
A drive circuit for a piezoelectric stack which drives a desired mechanical object such as a printing head of a dot matrix printer or an ink jet printer. A winding is connected in series with one of electrodes of the piezoelectric stack so that an excitation voltage is applied to the stack via the winding. An excessive charge current at each time of drive and an excessive discharge current at each time of recovery are prevented.
摘要:
In an electrostriction transducer comprising protection layers (21, 22) in which no electric fields are produced during operation, each of end electrostriction layers (41, 42) which are contiguous to the respective protection layers with pertinent ones of internal electrodes (16, 17) interposed, is given a thicker thickness (at) as compared with other or intermediate electrostriction layers (23) to make the transducer have a long life and a high reliability. The intermediate electrostriction layers may have a common thickness (t). Alternatively, the intermediate electrostriction layers may have monotonously decreasing thicknesses when placed nearer to a plane which bisects a pile (19) of the electrostriction layers parallel to both end surfaces of the pile. When a pair of holding members for the transducer are used on both longitudinal ends, each protection layer is preferably received in an indent formed in the holding member. Alternatively, it is preferred that each holding member should comprise a metal plate contiguous to the protection layer and a metal band surrounding parts of the metal plate and the protection layer.
摘要:
In an impact printer head intermittently movable along a printing line and comprising a plurality of printer units (25) each of which has a thickness and a printing wire (30) having a printing end operable between rest and actuated positions along a line of displacement (R), a support member (45) supports the printing wires so that a distance between two adjacent ones of the printing ends becomes smaller than each thickness at the actuated positions. To this end, the printer units are radially disposed by the supporting member to make the lines of displacement form an acute angle for two adjacent printer units and to position the printing ends in a predetermined configuration at the actuated positions. The predetermined configuration may be a single straight line perpendicular or oblique to the printing line. Alternatively, the configuration may be a pair of straight lines orthogonal or inclined to the printing line. The printing ends may be parallel to one another when supported by the support member along a straight line inclined to the printing line.
摘要:
In a differential lever actuator comprising transmission members (41, 42) for differentially transmitting oppositely sensed angular displacements from first and second weight points (P1, P3) of first and second lever members (31, 32) to first and second predetermined points (P2, P4) of a differential lever member (41), a distance between midpoints (S, T) between the first weight and predetermined points and between the second weight and predetermined points is kept constant irrespective of the angular displacements. Preferably, at least one transmission member should be perpendicular to a line passing through the related weight point and a fulcrum point (Q or R) of the associated one of the first and second lever members. When carried by the differential lever member for print of a dot, a rod should preferably have an axis passing through a point of intersection of the transmission members. Alternatively, the differential lever member should have a center of a rotational component of the distance (ST) at a point of percussion related to a reaction resulting from print of the dot. As a further alternative, at least one transmission member should be thicker than 0.05 times a length between the related weight and predetermined points.
摘要:
The present invention provides an encapsulant for optical semiconductor devices, which is capable of suppressing surface tackiness of a cured product and is also capable of enhancing the heat resistance and thermal cycle characteristics of the cured product. An encapsulant for optical semiconductor devices according to the present invention which includes: a first organopolysiloxane which is represented by formula (1A) or formula (1B) and has an alkenyl group and a methyl group bonded to a silicon atom; a second organopolysiloxane which is represented by formula (51A) or formula (51B) and has a hydrogen atom bonded to a silicon atom and a methyl group bonded to a silicon atom; and a catalyst for hydrosilylation reaction, and the content ratios of methyl groups bonded to silicon atoms in the first and second organopolysiloxanes each are 80 mol % or more. (R1R2R3SiO1/2)a(R4R5SiO2/2)b(R6SiO3/2)c Formula (1A) (R1R2R3SiO1/2)a(R4R5SiO1/2)b(R6SiO3/2)c Formula (1B) (R51R52R53SiO1/2)p(R54R55SiO2/2)q(R56SiO3/2)r Formula (51A) (R51R52R53SiO1/2)p(R54R55SiO2/2)q(R56SiO3/2)r Formula (51B)
摘要:
Provided is an encapsulant for optical semiconductor devices, which is capable of enhancing the adhesion between a housing and the encapsulant when an optical semiconductor device is encapsulated in the housing, and which is also capable of enhancing the bonding reliability with respect to humidity. The encapsulant for optical semiconductor devices includes: a first organopolysiloxane having an alkenyl group bonded to a silicon atom and an aryl group bonded to a silicon atom, but not having a hydrogen atom bonded to a silicon atom; a second organopolysiloxane having a hydrogen atom bonded to a silicon atom and an aryl group bonded to a silicon atom; a catalyst for hydrosilylation reaction; and an organic compound having a titanium atom.
摘要:
The present invention provides a sealant for an optical semiconductor device which is less likely to reduce its luminance and is also less likely to change its color even used in an energized state in harsh environments of high temperature and high humidity.The sealant for an optical semiconductor device includes: a first organopolysiloxane not containing a hydrogen atom bound to a silicon atom, but containing an alkenyl group bound to a silicon atom and an aryl group bound to a silicon atom, a second organopolysiloxane containing a hydrogen atom bound to a silicon atom and an aryl group bound to a silicon atom, and a platinum-alkenyl complex. The platinum-alkenyl complex is a reaction product obtained by reacting chloroplatinic acid hexahydrate with not less than 6 equivalent of a bi- or more-functional alkenyl compound. The ratio of the number of the alkenyl group bound to a silicon atom in the organopolysiloxane to the number of the hydrogen atom bound to a silicon atom in the organopolysiloxane in the sealant is not less than 1.0 and not more than 2.5.
摘要:
The present invention provides a sealant for an optical semiconductor device which is less likely to reduce its luminance and is also less likely to change its color even used in an energized state in harsh environments of high temperature and high humidity.The sealant for an optical semiconductor device includes: a first organopolysiloxane not containing a hydrogen atom bound to a silicon atom, but containing an alkenyl group bound to a silicon atom and an aryl group bound to a silicon atom, a second organopolysiloxane containing a hydrogen atom bound to a silicon atom and an aryl group bound to a silicon atom, and a platinum-alkenyl complex. The platinum-alkenyl complex is a reaction product obtained by reacting chloroplatinic acid hexahydrate with not less than 6 equivalent of a bi- or more-functional alkenyl compound. The ratio of the number of the alkenyl group bound to a silicon atom in the organopolysiloxane to the number of the hydrogen atom bound to a silicon atom in the organopolysiloxane in the sealant is not less than 1.0 and not more than 2.5.
摘要:
The present invention provides a sealant for an optical semiconductor device which has high gas barrier property against corrosive gas, and is less likely to crack or is less likely to peel off even when used in harsh environments.The sealant for an optical semiconductor device includes: a first silicone resin component including at least one of a first silicone resin A represented by formula (1A) shown below and a first silicone resin B represented by formula (1B) shown below, the first silicone resin A not containing a hydrogen atom bound to a silicon atom, but containing an aryl group and an alkenyl group, the first silicone resin B not containing a hydrogen atom bound to a silicon atom, but containing an aryl group and an alkenyl group; a second silicone resin component including at least one of a second silicone resin A represented by formula (51A) shown below and a second silicone resin B represented by formula (51B) shown below, the second silicone resin A containing an aryl group and a hydrogen atom directly bound to a silicon atom, the second silicone resin B containing an aryl group and a hydrogen atom directly bound to a silicon atom; and a catalyst for hydrosilylation reaction.