摘要:
A dynamic source coupled ESD protection circuit that dissipates an ESD voltage coupled to an electrical contact pad to protect internal circuits on an integrated circuits chip is described. The ESD protection circuit lowers the snapback voltage of the ESD protection circuit to allow a thinner gate oxide within the internal circuits of the integrated circuit chip. The dynamic substrate coupled electrostatic discharge protection circuit consists of a gated MOS transistor, a capacitor, and a resistor. The gated MOS transistor has a drain region connected to the electrical contact pad. The gate and source are connected to a power supply voltage source. The power supply voltage source will either be a substrate biasing voltage or ground reference point for a gated NMOS transistor. The power supply voltage source will be the power supply voltage source VDD for the gated PMOS transistor. The capacitor has a first plate connected to the electrical contact pad, and a second plate connected to said substrate bulk region of the MOS transistor. The resistor is a polycrystalline silicon resistor that is connected between the second plate of the capacitor and the power supply voltage source.
摘要:
A dynamic source coupled ESD protection circuit that dissipates an ESD voltage coupled to an electrical contact pad to protect internal circuits on an integrated circuits chip is described. The ESD protection circuit lowers the snapback voltage of the ESD protection circuit to allow a thinner gate oxide within the internal circuits of the integrated circuit chip. The dynamic substrate coupled electrostatic discharge protection circuit consists of a gated MOS transistor, a capacitor, and a resistor. The gated MOS transistor has a drain region connected to the electrical contact pad. The gate and source are connected to a power supply voltage source. The power supply voltage source will either be a substrate biasing voltage or ground reference point for a gated NMOS transistor. The power supply voltage source will be the power supply voltage source VDD for the gated PMOS transistor. The capacitor has a first plate connected to the electrical contact pad, and a second plate connected to said substrate bulk region of the MOS transistor. The resistor is a polycrystalline silicon resistor that is connected between the second plate of the capacitor and the power supply voltage source.
摘要:
An embedded SCR in conjunction with a Gated-NMOS is created for protecting a chip input or output pad from ESD, by inserting a p+ diffusion and the n-well in the drain side and a part of the drain to forms a low-trigger, high efficiency SCR. The device layout is such that the drain connection is tightly tied together at the p+ diffusion and the n+ drain making that connection very short and, thereby, preventing latch-up. The parasitic SCR is contained entirely within the n+ diffusion (the source of the grounded gate NMOS transistor) at either side of the structure and, therefore, called an embedded SCR. For a 12 volt I/O device each of two n+ drains is placed in its own n-type doped drain (ndd) area straddling halfway the n-well. The structure is repeated as required and a p+ diffusion is implanted at both perimeters and connected to the nearest n+ source and a reference voltage.
摘要:
An embedded parasitic silicon controlled rectifier (SCR) in conjunction with a Gated-NMOS is created for protecting a chip input or output pad from electrostatic discharge ESD, by inserting a p+ diffusion and the n-well in the drain side and a part of the drain to forms a low-trigger, high efficiency SCR. The device layout is such that the drain connection is tightly tied together at the p+ diffusion and the n+ drain making that connection very short and, thereby, preventing latch-up. The parasitic SCR is contained entirely within the n+ diffusion (the source of the grounded gate NMOS transistor) at either side of the structure and, therefore, called an embedded SCR. For a 12 volt I/O device each of two n+ drains is placed in its own n-type doped drain (ndd) area straddling halfway the n-well. The structure is repeated as required and a p+ diffusion is implanted at both perimeters and connected to the nearest n+ source and a reference voltage.
摘要:
Embodiments of the invention relate to an electrostatic discharge (ESD) device and method for forming an ESD device. An embodiment is an ESD protection device comprising a p well disposed in a substrate, an n well disposed in the substrate, a high voltage n well (HVNW) disposed between the p well and the n well in the substrate, a source n+ region disposed in the p well, and a plurality of drain n+ regions disposed in the n well.
摘要:
An integrated circuit includes at least one transistor over a substrate. A first guard ring is disposed around the at least one transistor. The first guard ring has a first type dopant. A second guard ring is disposed around the first guard ring. The second guard ring has a second type dopant. A first doped region is disposed adjacent to the first guard ring. The first doped region has the second type dopant. A second doped region is disposed adjacent to the second guard ring. The second doped region has the first type dopant. The first guard ring, the second guard ring, the first doped region, and the second doped region are capable of being operable as a first silicon controlled rectifier (SCR) to substantially release an electrostatic discharge (ESD).
摘要:
An electrostatic discharge (ESD) protection circuit includes a buried oxide layer; a semiconductor layer on the buried oxide layer; and a first and a second MOS device. The first MOS device includes a first gate over the semiconductor layer; a first well region having a portion underlying the first gate; and a first source region and a first drain region in the semiconductor layer. The second MOS device includes a second gate over the semiconductor layer; and a second well region having a portion underlying the first gate. The second well region is connected to a discharging node. The first well region is connected to the discharging node through the second well region, and is not directly connected to the discharging node. The second MOS device further includes a second source region and a second drain region in the semiconductor layer and adjoining the second well region.
摘要:
An electrostatic discharge (ESD) protection circuit includes a buried oxide layer; a semiconductor layer on the buried oxide layer; and a first and a second MOS device. The first MOS device includes a first gate over the semiconductor layer; a first well region having a portion underlying the first gate; and a first source region and a first drain region in the semiconductor layer. The second MOS device includes a second gate over the semiconductor layer; and a second well region having a portion underlying the first gate. The second well region is connected to a discharging node. The first well region is connected to the discharging node through the second well region, and is not directly connected to the discharging node. The second MOS device further includes a second source region and a second drain region in the semiconductor layer and adjoining the second well region.
摘要:
The invention describes a structure and a process for providing ESD semiconductor protection with reduced input capacitance. The structure consists of heavily doped P+ guard rings surrounding the I/O ESD protection device and the Vcc to Bss protection device. In addition, there is a heavily doped N+ guard ring surrounding the I/O protection device its P+ guard ring. The guard rings enhance structure diode elements providing enhanced ESD energy discharge path capability enabling the elimination of a specific conventional Vss to I/O pad ESD protection device. This reduces the capacitance seen by the I/O circuit while still providing adequate ESD protection for the active circuit devices.
摘要:
Provided are an electrostatic discharge (ESD) protection device and a method for making such a device. In one example, the ESD protection device includes a Zener diode region formed in a substrate and an N-type metal oxide semiconductor (NMOS) device formed adjacent to the Zener diode region. The Zener diode region has two doped regions, a gate with a grounded potential positioned between the two doped regions, and two light doped drain (LDD) features formed in the substrate. One of the LDD features is positioned between each of the two doped regions and the gate. The NMOS device includes a source and a drain formed in the substrate and a second gate positioned between the source and the drain.