摘要:
The invention provides a high-quality SiC single-crystal substrate, a seed crystal for producing the high-quality SiC single-crystal substrate, and a method of producing the high-quality SiC single-crystal substrate, which enable improvement of device yield and stability. Provided is an SiC single-crystal substrate wherein, when the SiC single-crystal substrate is divided into 5-mm square regions, such regions in which dislocation pairs or dislocation rows having intervals between their dislocation end positions of 5 μm or less are present among the dislocations that have ends at the substrate surface account for 50% or less of all such regions within the substrate surface and the dislocation density in the substrate of dislocations other than the dislocation pairs or dislocation is 8,000/cm2.
摘要翻译:本发明提供一种高品质SiC单晶衬底,用于生产高质量SiC单晶衬底的晶种,以及制造高品质SiC单晶衬底的方法,其能够提高器件产量和 稳定性。 本发明提供一种SiC单晶基板,其中,当将SiC单晶基板分割为5mm见方的区域时,其位错对或位错列之间的位错端位置之间的间隔为5μm以下的区域存在于 在基板表面处具有终点的位错占基板表面内所有这些区域的50%或更少,位错对或错位以外的位错基板中的位错密度为8,000 / cm 2。
摘要:
Disclosed is a process for producing an epitaxial single-crystal silicon carbide substrate by epitaxially growing a silicon carbide film on a single-crystal silicon carbide substrate by chemical vapor deposition. The step of crystal growth in the process comprises a main crystal growth step, which mainly occupies the period of epitaxial growth, and a secondary crystal growth step, in which the growth temperature is switched between a set growth temperature (T0) and a set growth temperature (T2) which are respectively lower and higher than a growth temperature (T1) used in the main crystal growth step. The basal plane dislocations of the single-crystal silicon carbide substrate are inhibited from being transferred to the epitaxial film. Thus, a high-quality epitaxial film is formed.
摘要:
Provided is an epitaxial silicon carbide single-crystal substrate in which a silicon carbide epitaxial film having excellent in-plane uniformity of doping density is disposed on a silicon carbide single-crystal substrate having an off angle that is between 1° to 6°. The epitaxial film is grown by repeating a dope layer that is 0.5 μm or less and a non-dope layer that is 0.1 μm or less. The dope layer is formed with the ratio of the number of carbon atoms to the number of silicon atoms (C/Si ratio) in a material gas being 1.5 to 2.0, and the non-dope layer is formed with the C/Si ratio being 0.5 or more but less than 1.5. The resulting epitaxial silicon carbide single-crystal substrate comprises a high-quality silicon carbide epitaxial film, which has excellent in-plane uniformity of doping density, on a silicon carbide single-crystal substrate having a small off angle.
摘要:
Provided is an epitaxial silicon carbide single-crystal substrate in which a silicon carbide epitaxial film having excellent in-plane uniformity of doping density is disposed on a silicon carbide single-crystal substrate having an off angle that is between 1° to 6°. The epitaxial film is grown by repeating a dope layer that is 0.5 μm or less and a non-dope layer that is 0.1 μm or less. The dope layer is formed with the ratio of the number of carbon atoms to the number of silicon atoms (C/Si ratio) in a material gas being 1.5 to 2.0, and the non-dope layer is formed with the C/Si ratio being 0.5 or more but less than 1.5. The resulting epitaxial silicon carbide single-crystal substrate comprises a high-quality silicon carbide epitaxial film, which has excellent in-plane uniformity of doping density, on a silicon carbide single-crystal substrate having a small off angle.
摘要:
Disclosed is a process for producing an epitaxial single-crystal silicon carbide substrate by epitaxially growing a silicon carbide film on a single-crystal silicon carbide substrate by chemical vapor deposition. The step of crystal growth in the process comprises a main crystal growth step, which mainly occupies the period of epitaxial growth, and a secondary crystal growth step, in which the growth temperature is switched between a set growth temperature (T0) and a set growth temperature (T2) which are respectively lower and higher than a growth temperature (T1) used in the main crystal growth step. The basal plane dislocations of the single-crystal silicon carbide substrate are inhibited from being transferred to the epitaxial film. Thus, a high-quality epitaxial film is formed.
摘要:
The invention provides a low resistivity silicon carbide single crystal wafer for fabricating semiconductor devices having excellent characteristics. The low resistivity silicon carbide single crystal wafer has a specific volume resistance of 0.001 Ωcm to 0.012 Ωcm and 90% or greater of the entire wafer surface area is covered by an SiC single crystal surface of a roughness (Ra) of 1.0 nm or less.
摘要:
The invention provides a low resistivity silicon carbide single crystal wafer for fabricating semiconductor devices having excellent characteristics. The low resistivity silicon carbide single crystal wafer has a specific volume resistance of 0.001 Ωcm to 0.012 Ωcm and 90% or greater of the entire wafer surface area is covered by an SiC single crystal surface of a roughness (Ra) of 1.0 nm or less.
摘要:
The present invention provides an epitaxial SiC monocrystalline substrate having a high quality epitaxial film suppressed in occurrence of step bunching in epitaxial growth using a substrate with an off angle of 6° or less and a method of production of the same, that is, an epitaxial silicon carbide monocrystalline substrate comprised of a silicon carbide monocrystalline substrate with an off angle of 6° or less on which a silicon carbide monocrystalline thin film is formed, the epitaxial silicon carbide monocrystalline substrate characterized in that the silicon carbide monocrystalline thin film has a surface with a surface roughness (Ra value) of 0.5 nm or less and a method of production of the same.
摘要:
The invention provides an apparatus for manufacturing good quality single-crystal silicon carbide stably without formation of cracks and the like, which apparatus comprises: at least a crucible for accommodating silicon carbide feedstock powder and seed crystal; heat insulation material installed around the crucible; and a heating device for heating the crucible, wherein the outer profile of the crucible includes at least one region of narrower diameter than a vertically adjacent region, insulation material is also installed in the space left by the diameter difference, and thickness of the insulation material at the narrower diameter region is greater than that of the insulation material at the vertically adjacent region. The apparatus for manufacturing single-crystal silicon carbide enables precise control of the temperature gradient inside the crucible, thereby enabling manufacture of good quality single-crystal silicon carbide.
摘要:
The present invention provides a single-crystal silicon carbide ingot capable of providing a good-quality substrate low in dislocation defects, and a substrate and epitaxial wafer obtained therefrom.It is a single-crystal silicon carbide ingot comprising single-crystal silicon carbide which contains donor-type impurity at a concentration of 2×1018 cm−3 to 6×1020 cm3 and acceptor-type impurity at a concentration of 1×1018 cm−3 to 5.99×1020 cm−3 and wherein the concentration of the donor-type impurity is greater than the concentration of the acceptor-type impurity and the difference is 1×1018 cm−3 to 5.99×1020 cm−3, and a substrate and epitaxial wafer obtained therefrom.
摘要翻译:本发明提供能够提供低位错缺陷的优质基板的单晶碳化硅锭,以及从其获得的基板和外延晶片。 是含有浓度为2×1018 cm -3〜6×1020cm 3的供体型杂质的浓度为1×1018 cm -1的受主型杂质的单晶碳化硅单晶碳化硅锭, 3〜5.99×1020cm-3,其中供体型杂质的浓度大于受主型杂质的浓度,差为1×1018cm-3〜5.99×1020cm-3,基板 和由其获得的外延晶片。