摘要:
Methods for preparing a substrate for a subsequent film formation process are described. Methods for preparing a substrate for a subsequent film formation process, without immersion in an aqueous solution, are also described. A process is described that includes disposing a substrate into a process chamber, the substrate having a thermal oxide surface with substantially no reactive surface terminations. The thermal oxide surface is exposed to a partial pressure of water above the saturated vapor pressure at a temperature of the substrate to convert the dense thermal oxide with substantially no reactive surface terminations to a surface with hydroxyl surface terminations. This can occur in the presence of a Lewis base such as ammonia.
摘要:
Methods for preparing a substrate for a subsequent film formation process are described. Methods for preparing a substrate for a subsequent film formation process, without immersion in an aqueous solution, are also described. A process is described that includes disposing a substrate into a process chamber, the substrate having a thermal oxide surface with substantially no reactive surface terminations. The thermal oxide surface is exposed to a partial pressure of water below the saturated vapor pressure at a temperature of the substrate to convert the dense thermal oxide with substantially no reactive surface terminations to a surface with hydroxyl surface terminations. This can occur in the presence of a Lewis base such as ammonia.
摘要:
A method of removing a high molecular weight organic-comprising hard mask or BARC from a surface of a porous low k dielectric material, where a change in the dielectric constant of the low k dielectric material is less than about 5% after application of the method. The method comprises exposing the organic-comprising hard mask or BARC to nitric acid vapor which contains at least 68% by mass HNO3.
摘要:
A method of removing a high molecular weight organic-comprising hard mask or BARC from a surface of a porous low k dielectric material, where a change in the dielectric constant of the low k dielectric material is less than about 5% after application of the method. The method comprises exposing the organic-comprising hard mask or BARC to nitric acid vapor which contains at least 68% by mass HNO3.
摘要:
Embodiments disclosed herein generally relate to a process of depositing a transparent conductive oxide layer over a substrate. The transparent oxide layer is sometimes deposited onto a substrate for later use in a solar cell device. The transparent conductive oxide layer may be deposited by a “cold” sputtering process. In other words, during the sputtering process, a plasma is ignited in the processing chamber which naturally heats the substrate. No additional heat is provided to the substrate during deposition such as from the susceptor. After the transparent conductive oxide layer is deposited, the substrate may be annealed and etched, in either order, to texture the transparent conductive oxide layer. In order to tailor the shape of the texturing, different wet etch chemistries may be utilized. The different etch chemistries may be used to shape the surface of the transparent conductive oxide and the etch rate.
摘要:
A method of removing resist material from a substrate having a magnetically active surface is provided. The substrate is disposed in a processing chamber and exposed to a fluorine-containing plasma formed from a gas mixture having a reagent, an oxidizing agent, and a reducing agent. A cleaning agent may also be included. The substrate may be cooled by back-side cooling or by a cooling process wherein a cooling medium is provided to the processing chamber while the plasma treatment is suspended. Substrates may be flipped over for two-sided processing, and multiple substrates may be processed concurrently.
摘要:
Embodiments of the invention are directed to photovoltaic cells comprising a substantially optically transparent buffer layer on a superstrate and a photoabsorber layer on the buffer layer. The buffer layer of detailed embodiments has a work function greater than or equal to about the work function of the photoabsorber layer. Additional embodiments of the invention are directed to photovoltaic modules comprises a plurality of photovoltaic cells and methods of making photovoltaic cells and photovoltaic modules.
摘要:
Processes and apparatus of forming patterns including magnetic and non-magnetic domains on a magnetically susceptible surface on a substrate are provided. In one embodiment, a method of forming a pattern of magnetic domains on a magnetically susceptible material disposed on a substrate includes exposing a first portion of a magnetically susceptible layer to a plasma formed from a gas mixture, wherein the gas mixture includes at least a halogen containing gas and a hydrogen containing gas for a time sufficient to modify a magnetic property of the first portion of the magnetically susceptible layer exposed through a mask layer from a first state to a second state.
摘要:
A method of removing resist material from a substrate having a magnetically active surface is provided. The substrate is disposed in a processing chamber and exposed to a fluorine-containing plasma formed from a gas mixture having a reagent, an oxidizing agent, and a reducing agent. A cleaning agent may also be included. The substrate may be cooled by back-side cooling or by a cooling process wherein a cooling medium is provided to the processing chamber while the plasma treatment is suspended. Substrates may be flipped over for two-sided processing, and multiple substrates may be processed concurrently.
摘要:
According to one aspect of the present invention, a method and apparatus for cleaning a semiconductor substrate is provided. The method may include supporting a semiconductor substrate, the semiconductor substrate having a surface, and dispensing an amount of semiconductor substrate processing liquid onto the surface of the semiconductor substrate, the amount of semiconductor substrate processing liquid being such that substantially none of the semiconductor substrate processing liquid flows off the surface of the semiconductor substrate. The semiconductor substrate processing fluid may form a standing puddle on the surface of the semiconductor substrate. The semiconductor substrate may be rotated while the semiconductor substrate processing liquid is on the surface of the semiconductor substrate such that substantially all of the amount of semiconductor substrate processing liquid remains on the surface of the semiconductor substrate during said rotation.