摘要:
To provide a semiconductor device which can retain information for a long period of time even in a case that the tunnel insulation film is thin. A semiconductor device comprises a first insulation film 14 formed on a semiconductor substrate 10, a floating gate electrode 22 formed on the first insulation film, a second insulation 24 film formed on the floating gate electrode, and a control gate electrode 26 formed on the second insulation film. A depletion layer is formed in the floating gate electrode near the first insulation film in a state that no voltage is applied between the floating gate electrode and the semiconductor substrate.
摘要:
A tunneling insulating film is formed on the partial surface area of a semiconductor substrate. A floating gate electrode is formed on the tunneling insulating film. A gate insulating film covers the side wall of the floating gate electrode and a partial surface area of the semiconductor substrate on both sides of the floating gate electrode. A first control gate electrode is disposed on the gate insulating film over the side wall of the floating gate electrode and over a partial surface area of the semiconductor substrate on both sides of the floating gate electrode. A pair of impurity doped regions is formed in a surface layer of the semiconductor substrate on both sides of a gate structure including the floating gate structure and first control gate structure.
摘要:
A single-photon generator includes a single-photon generating device generating a single-photon pulse having a wavelength on the shorter wavelength side than a communication wavelength band, and a single-photon wavelength conversion device performing wavelength conversion of the single-photon pulse into a single-photon pulse of the communication wavelength band, using pump pulse light for single-photon wavelength conversion.
摘要:
A single-photon generating device is configured to have a solid substrate including abase portion, and a pillar portion which is formed on the surface side of the base portion with a localized level existent in the vicinity of the tip of the base portion. The above pillar portion is formed to have a larger cross section on the base portion side than the cross section on the tip side, so that the light generated from the localized level is reflected on the surface, propagated inside the pillar portion, and output from the back face side of the base portion.
摘要:
A direct-tunneling semiconductor memory device includes a device isolation structure formed on a semiconductor substrate, including a device isolation trench and a device isolation insulation film filling the device isolation trench, a dielectric film covering both sidewall surfaces and a top surface of a floating gate electrode formed on the semiconductor substrate, a conductive part provided on the sidewall surfaces of the floating gate electrode via the dielectric film, the conductor part constituting a part of a control gate electrode, and first and second diffusion regions formed at respective lateral sides of the floating gate electrode, wherein the first and second diffusion regions are formed on a surface of the device isolation groove with offset from a region right underneath the floating gate electrode, the conductive part is formed in the device region with offset from the device isolation trench.
摘要:
A direct-tunneling semiconductor memory device includes a device isolation structure formed on a semiconductor substrate, including a device isolation trench and a device isolation insulation film filling the device isolation trench, a dielectric film covering both sidewall surfaces and a top surface of a floating gate electrode formed on the semiconductor substrate, a conductive part provided on the sidewall surfaces of the floating gate electrode via the dielectric film, the conductor part constituting a part of a control gate electrode, and first and second diffusion regions formed at respective lateral sides of the floating gate electrode, wherein the first and second diffusion regions are formed on a surface of the device isolation groove with offset from a region right underneath the floating gate electrode, the conductive part is formed in the device region with offset from the device isolation trench.
摘要:
A direct-tunneling semiconductor memory device includes a device isolation structure formed on a semiconductor substrate, including a device isolation trench and a device isolation insulation film filling the device isolation trench, a dielectric film covering both sidewall surfaces and a top surface of a floating gate electrode formed on the semiconductor substrate, a conductive part provided on the sidewall surfaces of the floating gate electrode via the dielectric film, the conductor part constituting a part of a control gate electrode, and first and second diffusion regions formed at respective lateral sides of the floating gate electrode, wherein the first and second diffusion regions are formed on a surface of the device isolation groove with offset from a region right underneath the floating gate electrode, the conductive part is formed in the device region with offset from the device isolation trench.
摘要:
A semiconductor device has: an isolation region formed on a semiconductor substrate and defining a continuous active region including a select transistor region and a direct tunnel element region; a gate insulating film formed on a channel region of the select transistor region; a tunnel insulating film formed on a partial area of the direct tunnel element region and having a thickness different from a thickness of the gate insulating film; a continuous floating gate electrode formed above the gate insulating film and the tunnel insulating film; an inter-electrode insulating film formed on a surface of the floating gate electrode; a control gate electrode facing the floating gate electrode via the inter-electrode insulating film; and a pair of source/drain regions formed on both sides of the channel region of the select transistor region and not overlapping the tunnel insulating film.
摘要:
A private key delivery system and a private key delivery method are disclosed. The private key delivery system includes a transmitter, a receiver, and an optical transmission line connecting the transmitter and the receiver. The transmitter includes a single photon generating unit for simultaneously generating two or more single photons having different wavelengths using a quantum dot structure that has quantum dots of various sizes, an optical splitter for splitting the single photons by wavelengths, a phase modulating unit for modulating each of the single photons split by the wavelengths with private key information, and an optical multiplexer for multiplexing the modulated single photons of the different wavelength and for transmitting the multiplexed single photons to the optical transmission line. The multiplexed single photons are received by the receiver, and the private key information is taken out from the received single photons.
摘要:
A semiconductor device has: an isolation region formed on a semiconductor substrate and defining a continuous active region including a select transistor region and a direct tunnel element region; a gate insulating film formed on a channel region of the select transistor region; a tunnel insulating film formed on a partial area of the direct tunnel element region and having a thickness different from a thickness of the gate insulating film; a continuous floating gate electrode formed above the gate insulating film and the tunnel insulating film; an inter-electrode insulating film formed on a surface of the floating gate electrode; a control gate electrode facing the floating gate electrode via the inter-electrode insulating film; and a pair of source/drain regions formed on both sides of the channel region of the select transistor region and not overlapping the tunnel insulating film.