摘要:
The invention provides N-aryloxyacyl-N-phenyltetrahydrophthalamic acid derivatives represented by the general formula [I], a method of producing the same, and a herbicide containing the same as the effective components, ##STR1## wherein X and Y each individually represent hydrogen atoms or halogen atoms, Ar represents a substituted or unsubstituted phenyl group or naphthyl group, R.sup.1 represents a hydrogen atom, a halogen atom, a lower alkyl group, a lower alkoxy group, a lower alkenyloxy group, a lower alkynyloxy group, a lower alkoxyalkoxy group or a lower alkoxycarbonylalkoxy group, R.sup.2 represents a hydrogen atom or a lower alkyl group, R.sup.3 represents a hydroxyl, a lower alkoxy group, a lower alkenyloxy group, a lower alkynyloxy group, a lower alkoxyalkoxy group, a benzyloxy group or a lower alkoxycarbonylalkoxy group, and m is an integer ranging from 0 to 5. This herbicide which is very useful can be widely applied to upland, paddy field, orchard, turf, forest, non-crop land, etc., and is not harmful to crops.
摘要:
The invention provides N-acyl-N-phenylmaleamic acid derivatives represented by the general formula I!, a method of producing the same, and a herbicide containing the same as the effective components, ##STR1## wherein X and Y each individually represent hydrogen atoms or halogen atoms, R.sup.1 represents a hydrogen atom, a halogen atom, a lower alkyl group, a lower alkenyl group, a lower alkynyl group, a lower alkoxyalkyl group or a lower alkoxycarbonylalkyl group, R.sup.2 represents a lower alkyl group, a halogenated lower alkyl group or a substituted or unsubstituted phenyl group, R.sup.3 represents a hydrogen atom or a lower alkyl group, and R.sup.4 represents a hydroxyl, a lower alkoxy group, a lower alkenyloxy group, a lower alkynyloxy group, a lower alkoxyalkoxy group, a benzyloxy group or a lower alkoxycarbonylalkoxy group. This herbicide which is very useful can be widely applied to upland, paddy field, orchard, turf, forest, non-crop land, etc., and is not harmful to crops.
摘要:
The invention provides N-phenyltetrahydrophthalamic acid derivatives represented by the general formula �I!, methods of producing the same, herbicides containing the same as the effective components, imidoylchloride derivatives as the intermediate products and methods of producing the same, ##STR1## wherein X and Y each individually represent hydrogen atoms or halogen atoms, R.sup.1 represents a lower alkoxycarbonylalkylthio group, R.sup.2 represents a lower alkyl group, a halogenated lower alkyl group or a substituted or unsubstituted phenyl group, and R.sup.3 represents a lower alkoxy group, a lower alkenyloxy group, a lower alkynyloxy group, or a lower alkoxyalkoxy group. The herbicides of the present invention, which are very useful, can be widely applied to upland, paddy field, orchard, turf, forest, non-crop land, etc., and are not harmful to crops.
摘要:
The invention provides N-phenyltetrahydrophthalamic acid derivatives represented by the general formula [I], methods of producing the same, herbicides containing the same as the effective components, imidoylchloride derivatives as the intermediate products and methods of producing the same, wherein X and Y each individually represent hydrogen atoms or halogen atoms, R1 represents a lower alkoxycarbonylalkylthio group, R2 represents a lower alkyl group, a halogenated lower alkyl group or a substituted or unsubstituted phenyl group, and R3 represents a lower alkoxy group, a lower alkenyloxy group, a lower alkynyloxy group, or a lower alkoxyalkoxy group. The herbicides of the present invention, which are very useful, can be widely applied to upland, paddy field, orchard, turf, forest, non-crop land, etc., and are not harmful to crops.
摘要:
A torque-index sensor having index sensor and torque sensor closely arranged and integrated therein with lightened interference between them is provided. The invented torque-index sensor is comprised of torque sensor that includes first magnetic sensor arranged beside first annular-shaped magnet and index sensor that includes second magnet arranged beside annular-shaped encoder and second magnetic sensor that are arranged being in-line on common axis; and means for varying magnetic flux, which changes direction of magnetic flux that is generated from second magnet toward first magnetic sensor, positioned between first magnetic sensor in torque sensor and second magnet in index sensor.
摘要:
A magnetostrictive torque sensor having: a rotating shaft to rotate around a center axis, the rotating shaft having magnetostrictive characteristics; and a cylindrical magnetic core disposed at a predetermined distance on an outer periphery of the rotating shaft, the cylindrical magnetic core having a detection coil disposed on an inner periphery thereof to detect a torque applied to the rotating shaft. The detection coil is formed with a coil assembly to form a bridged circuit, and the coil assembly is formed with a flexible substrate coil disposed on a whole inner periphery of the magnetic core.
摘要:
A torque sensor 1 is provided with two shafts 3, 4 (input shaft 3 and output shaft 4) which constitute a shaft member 2, which is a torque detection object, an elastic member 5 which connects the shafts 3 and 4 coaxially, and a torsion angle of the elastic member 5 is detected as a torque which affects on the shaft member 2. The torque sensor 1 is provided with a hard magnetic member 6 which generates a magnetic flux therearound, a pair of first soft magnetic members 7, 8 which constitute a first magnetic circuit H1 together with the hard magnetic member 6 to change a reluctance by torsion of the elastic member 5, a pair of second soft magnetic members 9, 10 which constitute a second magnetic circuit H2 together with the hard magnetic member 6 to keep the reluctance constant, and a flux detection means 12 which detects a flux density of the second magnetic circuit H2 that varies in accordance with a torsion angle of the elastic member 5.
摘要:
The present invention includes: a first main waveguide 1; a T-branch circuit 3 connected thereto; a first low-pass filter 5 connected thereto; a band-pass filter 7 connected to the first T-branch circuit 3; a first converter 8 connected to the first low-pass filter 5 for converting transmission lines between a waveguide and a microwave integrated circuit; an amplifier 10 connected to the first converter and structured by the microwave integrated circuit; a second converter 9 connected thereto for converting transmission lines between a waveguide and the microwave integrated circuit; a second low-pass filter 6 connected thereto; a second T-branch circuit 4 connected to the second low-pass filter and the band-pass filter 7; and a second main waveguide 2 connected to the second T-branch circuit.
摘要:
A divider 3 for dividing and distributing a high-frequency signal input from an input terminal 1 to two output sides, a main amplifying unit 4, connected to one output side of the divider 3, for amplifying one high-frequency signal output from the divider 3, a subsidiary amplifying unit 5, connected to the other output side of the divider 3, for performing no operation in case of a low instantaneous electric power of the other high-frequency signal output from the divider 3 and amplifying the other high-frequency signal in case of a high instantaneous electric power of the other high-frequency signal and a circulator 6 for injecting the high-frequency signal amplified in the subsidiary amplifying unit 5 into the output side of the main amplifying unit 4 and injecting the high-frequency signal amplified in the main amplifying unit 4 into an output terminal 2 are arranged.
摘要:
A high-frequency amplifying unit 2 in which a steep gain variation developed according to a change in the amplitude of input high-frequency signal is suppressed is provided. It amplifies an input high-frequency signal with a plurality of transistors 12-1 to 12-N at the same time a measuring circuit 27 measures amplitude of the input high-frequency signal, and a bias control circuit 26 continuously controls a bias applied to each transistors 12-1 to 12-N according to the value of amplitude measured by the measuring circuit 27. Thus it is possible to suppress a steep gain variation produced according to a variation in the amplitude of input high-frequency signal.