Abstract:
In a multi-layer substrate module receiving from an external earth node (20) supply of a reference potential (Vss) for grounding, a plurality of ground lines (170-1, 170-2, 170-3) are provided respectively corresponding to a plurality of internal circuits (210, 220, 230). Moreover, a common node (Ncmn) for coupling the ground lines (170-1, 170-2, 170-3) is provided in an insulating layer (105C) of the multi-layer substrate module. The common node (Ncmn) is electrically coupled to the earth node 20 through a ground pin terminal 204 shared by the plurality of internal circuits (210, 220, 230). Preferably, the common node (Ncmn) is provided in the lowest insulating layer of the multi-layer substrate module. Thus, parasitic inductance of the portion through which an earth current flows, that is, the portion common to the plurality of internal circuits (210, 220, 230), can be suppressed with a small number of ground pin terminals. Accordingly, the inflow phenomenon of the earth current between the plurality of internal circuits (210, 220, 230) is prevented, enabling stable operation.
Abstract:
A non-linearity compensating circuit for a high frequency amplifier includes a first divider for dividing a high frequency input signal into two signals, a distortion generating amplifier for non-linearly amplifying the first output of the first divider, a linear amplifier for linearly amplifying the second output from the first divider, a second divider for dividing the output of the linear amplifier into first and second signals, a first combiner for combining the output of the distortion generating amplifier with the first signal to extract the distortion component of the distortion generating amplifier, and a second combiner for combining the second signal with the distortion component.
Abstract:
A high frequency amplifier includes a constant voltage driven amplifier 1 using as its amplifying element a bipolar transistor 7 with its base biased by a constant voltage, and a constant current driven amplifier 2 using as its amplifying element a bipolar transistor 8 with its base biased by a constant current. The idle current of the constant current driven amplifier 2 is set at a low value. In accordance with the idle current, the idle current of the constant voltage driven amplifier 1 is adjusted, and the two amplifiers are combined in parallel.
Abstract:
A radio frequency circuit is disclosed which includes a low-noise amplifier and a mixer integrated on the same semiconductor chip by using a silicon BiCMOS process. The low-noise amplifier has a silicon bipolar junction transistor and the mixer has a silicon MOS type field effect transistor. In the radio frequency circuit, the mixer can include two silicon MOS type field effect transistors one of which has a source connected to a drain of the other silicon MOS type field effect transistor and a gate of one silicon MOS type field effect transistor is supplied with a local signal and a gate of the other silicon MOS type field effect transistor is supplied with a radio frequency signal amplified by the low-noise amplifier.
Abstract:
The detector comprises a first distributor for distributing a signal wave, a 45 degree shifter for shifting a local oscillation, a first even harmonic mixer and a second even harmonic mixer for generating a mixed wave between a double frequency wave of said local oscillation wave and said signal wave. The present invention can be used for increasing the accuracy and downsizing of quadrature mixer used in a receiving transmitting apparatus of a wireless communication system.
Abstract:
A linear amplifier includes a variable attenuator and a phase shifter for modifying the amplitude and phase of an input signal to compensate for amplitude and phase distortion caused by non-linear characteristics of a high-powered amplifier utilized in a microwave band communications system. An amplitude comparator and a phase comparator compare the amplitudes and phases of input and output signals of the linear amplifier circuit to develop control signals for controlling the operation of the variable attenuator and phase shifter. The elimination of digital signal processing circuitry allows increased speed of operation that is essential for use in the microwave bands.
Abstract:
In a modulation system using an amplitude and a phase of a carrier wave as information such as a QPSK system, a modulation device modifies an input signal series to compensate the nonlinear characteristics of an amplifier located at a later stage, and provides a carrier wave modulated by the modified signal series to the amplifier. A first arithmetic circuit obtains an amplitude and a phase of an input signal by calculation. A ROM is set with correction data corresponding to the calculated amplitude so as to compensate the nonlinearity of the amplifier. A modification value generating circuit and a RAM output an amount of compensation so as to further modify the correction data according to part of an output signal from the amplifier to compensate amplifier characteristic changes due to temperature variations and the like. A second arithmetic circuit provides a signal series produced from the modified amplitude and phase to a quadrature modulator.
Abstract:
When transmitting an RF signal for power supply or a pulse signal for data transmission, amplification is made in such a manner that the peak power of the RF signal becomes greater than the peak power of the pulse signal. Thus transmitting the RF signal with the greater peak power enables charging of a capacitor 23 of noncontact wireless communication equipment 2 even if the distance to the noncontact wireless communication equipment 2 is long.
Abstract:
A high-power amplifier changes matching conditions of an output matching circuit 5 connected between a final stage amplifying element 3 and an output terminal 8 in response to the output power of the amplifying element 3. Thus, the efficiency at low output power can be greatly improved without reducing the efficiency at the maximum output. Besides, since it is not necessary to load a DC-DC converter, an increase in size or cost can be prevented.
Abstract:
When transmitting an RF signal for power supply or a pulse signal for data transmission, amplification is made in such a manner that the peak power of the RF signal becomes greater than the peak power of the pulse signal. Thus transmitting the RF signal with the greater peak power enables charging of a capacitor 23 of noncontact wireless communication equipment 2 even if the distance to the noncontact wireless communication equipment 2 is long.