摘要:
Oxygen ion is implanted into a silicon substrate to remain a silicon layer on a surface of the silicon substrate. In this state, a silicon oxide layer is formed under the silicon layer. Silicon oxide particles are formed and remained in the residual silicon layer. While maintaining this state, the silicon substrate is heated to a predetermined temperature not less than 1300.degree. C. Alternatively, the silicon substrate is heated at a high temperature-rise rate to 900-1100.degree. C., and thereafter is heated at a low temperature-rise rate to the temperature not less than 1300.degree. C. The silicon substrate is held at the predetermined temperature not less than 1300.degree. C. for a predetermined time, whereby crystallinity of the residual silicon layer is restored. A pinning effect of the silicon oxide particles prevents the rise of dislocation to the surface of the SOI layer, and also suppresses a rate per a unit time at which interstitial silicon generates during the heating to the high temperature region. Therefore, a dislocation density of the SOI layer can be reduced.
摘要:
Oxygen ion is implanted into a silicon substrate to remain a silicon layer on a surface of the silicon substrate. In this state, a silicon oxide layer is formed under the silicon layer. Silicon oxide particles are formed and remained in the residual silicon layer. While maintaining this state, the silicon substrate is heated to a predetermined temperature not less than 1300.degree. C. Alternatively, the silicon substrate is heated at a high temperature-rise rate to 900.degree.-1100.degree. C., and thereafter is heated at a low temperature-rise rate to the temperature not less than 1300.degree. C. The silicon substrate is held at the predetermined temperature not less than 1300.degree. C. for a predetermined time, whereby crystallinity of the residual silicon layer is restored. A pinning effect of the silicon oxide particles prevents the rise of dislocation to the surface of the SOI layer, and also suppresses a rate per a unit time at which interstitial silicon generates during the heating to the high temperature region. Therefore, a dislocation density of the SOI layer can be reduced.
摘要:
A polysilicon layer is formed on a surface of a silicon substrate after oxygen ions are implanted into the silicon substrate and an SiO.sub.2 film is formed in the silicon substrate at a position in a prescribed depth from the surface of silicon substrate. A heat treatment is performed to a silicon layer between the polysilicon layer and the SiO.sub.2 film, thereby providing an SOI layer with improved crystal quality.
摘要:
A polysilicon or amorphous Si layer is formed on a surface of a silicon substrate. Oxygen ions are implanted into the silicon substrate through the polysilicon layer, and an SiO.sub.2 film is formed in the silicon substrate at a position in a prescribed depth from the surface of silicon substrate. A heat treatment is performed to a silicon layer between the polysilicon layer and the SiO.sub.2 film, thereby providing an SOI layer with improved crystal quality.
摘要:
According to a semiconductor device of the present invention, a field oxide film is formed so as to cover the main surface of an SOI layer and to reach the main surface of a buried oxide film. As a result, a pMOS active region of the SOI and an nMOS active region of the SOI can be electrically isolated completely. Therefore, latchup can be prevented completely. As a result, it is possible to provide a semiconductor device using an SOI substrate which can implement high integration by eliminating reduction of the breakdown voltage between source and drain, which was a problem of a conventional SOI field effect transistor, as well as by efficiently disposing a body contact region, which hampers high integration, and a method of manufacturing the same.
摘要:
A semiconductor device in which parasitic resistance of source/drain regions can be reduced than the parasitic resistance of the drain region, and manufacturing method thereof, can be obtained. In the semiconductor device, inactivating ions are implanted only to the source region of the semiconductor layer, so as to damage the crystal near the surface of the semiconductor layer, whereby siliciding reaction is promoted. Therefore, in the source region, a titanium silicide film which is thicker can be formed.
摘要:
A semiconductor device in which parasitic resistance of source/drain regions can be reduced than the parasitic resistance of the drain region, and manufacturing method thereof, can be obtained. In the semiconductor device, inactivating ions are implanted only to the source region of the semiconductor layer, so as to damage the crystal near the surface of the semiconductor layer, whereby siliciding reaction is promoted. Therefore, in the source region, a titanium silicide film which is thicker can be formed.
摘要:
A buried oxide film 4 is formed on a main surface of a silicon substrate 1. An SOI layer 5 is formed on buried oxide film 4. Channel stop regions 22a and 22b respectively connected to channel regions of an nMOS 2 and a pMOS 3 are formed in an element isolation region of SOI layer 5. nMOS 2 and pMOS 3 are formed in an element formation region of SOI layer. A concentration of a p type impurity or an n type impurity included in channel stop regions 22a and 22b is higher than a concentration of the p type impurity or the n type impurity included in the channel region of nMOS 2 or the channel region of pMOS 3. An FS gate 16 is formed on channel stop regions 22a and 22b with an FS gate oxide film 15 interposed therebetween. Therefore, a semiconductor device having an SOI structure which is capable of suppressing a parasitic bipolar operation by drawing out efficiently excessive carriers stored in the channel region of transistor can be obtained.
摘要:
An MOS field effect transistor comprises a channel region (6) of a first conductivity type formed in a semiconductor layer (3) on an insulator substrate (2), a source region (8) and a drain region (9) of a second conductivity type formed in contact with one and the other sides of the channel region (6) in the semiconductor layer (3), respectively, a body region (7) formed in contact with at least a part of the channel region (6) and a part of a periphery of the source region (8) in the semiconductor layer (3) and having a higher impurity concentration than that of the channel region (6), a gate dielectric thin film (4) and a gate electrode (5) formed on the channel region (6), and a conductor (14a) connected in common to the source region (8) and the body region (7).
摘要:
A semiconductor device includes a conductor layer (3, 7) having a silicon crystal, an insulator layer (5, 15) formed on the surface of the conductor layer (3, 7) having a contact hole therethrough to said surface of the conductor layer (3, 7), an interconnecting portion formed at a predetermined location in the insulator layer (5, 15) and having a contact hole (6, 9) the bottom surface of which becomes the surface of the conductor layer (3, 7), a barrier layer (14) formed at the bottom of said contact hole at least on the surface of the conductor layer (3, 7) in the interconnecting portion, and a metal silicide layer (12) formed on the barrier layer (14). This semiconductor device is manufactured by depositing the insulator layer (5, 15) having the contact hole (6, 9) on the conductor layer (3, 7) having the silicon crystal, forming the barrier layer (14) and the polysilicon layer (7, 10) overlapping each other in the contact hole (6, 9) and on the insulator layer (5, 15) and then patterning these overlapping barrier layer (14) and polysilicon layer (7, 10), forming a metal layer (8, 11) thereon to be silicidized, and removing unreacted metal. The semiconductor device thus manufactured prevents a suction of silicon from the conductor layer (3, 7) to the metal silicide layer (12) and hence prevents an increase in resistance value due to a deficiency of silicon produced in the conductor layer (3, 7), thereby minimizing a series resistance of the metal silicide layer (12), a contact portion and the conductor layer (3, 7).