Abstract:
An integrated circuit containing CMOS transistors and an embedded thermoelectric device is formed by forming isolation trenches in a substrate, concurrently between the CMOS transistors and between thermoelectric elements of the embedded thermoelectric device. Dielectric material is formed in the isolation trenches to provide field oxide which laterally isolates the CMOS transistors and the thermoelectric elements. Germanium is implanted into the substrate in areas for the thermoelectric elements, and the substrate is subsequently annealed, to provide a germanium density of at least 0.10 atomic percent in the thermoelectric elements between the isolation trenches. The germanium may be implanted before the isolation trenches are formed, after the isolation trenches are formed and before the dielectric material is formed in the isolation trenches, and/or after the dielectric material is formed in the isolation trenches.
Abstract:
A method to adjust transistor gate geometries in a design data base to compensate for transistor-to-transistor active overlap of gate differences and to form a reticle. A method to adjust transistor geometries in a design data base to compensate for transistor-to-transistor active overlap of gate differences and to compensate for transistor turn on voltage drop off where the transistor gate crosses the isolation/active interface.
Abstract:
In described examples, an embedded thermoelectric device is formed by forming isolation trenches in a substrate, concurrently between CMOS transistors and between thermoelectric elements of the embedded thermoelectric device. Dielectric material is formed in the isolation trenches to provide field oxide which laterally isolates the CMOS transistors and the thermoelectric elements. Germanium is implanted into the substrate in areas for the thermoelectric elements, and the substrate is subsequently annealed, to provide a germanium density of at least 0.10 atomic percent in the thermoelectric elements between the isolation trenches. The germanium may be implanted before the isolation trenches are formed, after the isolation trenches are formed and before the dielectric material is formed in the isolation trenches, and/or after the dielectric material is formed in the isolation trenches.
Abstract:
An integrated circuit containing CMOS transistors and an embedded thermoelectric device is formed by forming isolation trenches in a substrate, concurrently between the CMOS transistors and between thermoelectric elements of the embedded thermoelectric device. Dielectric material is formed in the isolation trenches to provide field oxide which laterally isolates the CMOS transistors and the thermoelectric elements. Germanium is implanted into the substrate in areas for the thermoelectric elements, and the substrate is subsequently annealed, to provide a germanium density of at least 0.10 atomic percent in the thermoelectric elements between the isolation trenches. The germanium may be implanted before the isolation trenches are formed, after the isolation trenches are formed and before the dielectric material is formed in the isolation trenches, and/or after the dielectric material is formed in the isolation trenches.
Abstract:
A method of computational lithography includes collecting a critical dimension (CD) data set including CD data from printing a test structure including a set of gratings which provide a plurality of feature types including different ratios of line width to space width, where the printing includes a range of different focus values. The CD data is weighted to form a weighted CD data set using a weighting algorithm (WA) that assigns cost weights to the CD data based its feature type and its magnitude of CD variation with respect to a CD value for its feature type at a nominal focus (nominal CD). The WA algorithm reduces a value of the cost weight as the magnitude of variation increases. At least one imaging parameter is extracted from the weighted CD data set. A computational lithography model is automatically calibrated using the imaging parameter(s).
Abstract:
A method to adjust transistor gate geometries in a design data base to compensate for transistor-to-transistor active overlap of gate differences and to form a reticle. A method to adjust transistor geometries in a design data base to compensate for transistor-to-transistor active overlap of gate differences and to compensate for transistor turn on voltage drop off where the transistor gate crosses the isolation/active interface.
Abstract:
In described examples, an embedded thermoelectric device is formed by forming isolation trenches in a substrate, concurrently between CMOS transistors and between thermoelectric elements of the embedded thermoelectric device. Dielectric material is formed in the isolation trenches to provide field oxide which laterally isolates the CMOS transistors and the thermoelectric elements. Germanium is implanted into the substrate in areas for the thermoelectric elements, and the substrate is subsequently annealed, to provide a germanium density of at least 0.10 atomic percent in the thermoelectric elements between the isolation trenches. The germanium may be implanted before the isolation trenches are formed, after the isolation trenches are formed and before the dielectric material is formed in the isolation trenches, and/or after the dielectric material is formed in the isolation trenches.
Abstract:
A method of computational lithography includes providing through-focus critical dimension (CD) curves at a range of different focus values (Bossung curves) for a plurality of feature types that include different ratios of line width to space width. Using software run on a computing device, it is determined if there is at least one marginal feature type from the plurality of feature types based an image tool capability and a predetermined process specification affected by at least one of the plurality of feature types. Provided a marginal feature type is determined to be present, at least the marginal feature type(s) is upsized. A degree of upsizing increases as a curvature of the Bossung curves increases. A computational lithography model is compiled including the upsizing.