Abstract:
A conductive composite includes a first layer of elastomeric polymer, a layer of electrically conductive paste on the first layer of elastomeric polymer, and a second layer of elastomeric polymer on the layer of electrically conductive paste. A reinforcement mesh is in contact with the layer of electrically conductive paste.
Abstract:
Methods and formulations for modified silicone resins of Formula (II) are presented. Formula (II) comprises at least one of each of the following subunits: The R1, R2, R3, R6, R7, R8, R9, R10, R11, R12 and R13 are each independently selected from a group consisting of H, alkyl, alkenyl, alkynyl, and aryl. The X is selected from a group consisting of arylene, transition metal, inorganic oxide, and silsesquioxane. The values oft ranges from 1 to 10, y ranges from 1 to 200 and z ranges from 1 to 1,000. The elastomeric materials prepared from modified silicone resins display robust mechanical properties following prolonged exposure to high temperatures (e.g., 316° C. or higher).
Abstract:
Methods and formulations for modified silicone resins of Formula (I) are presented: The R1, R2, and R3 are each independently selected from a group consisting of H, alkyl, alkenyl, alkynyl, and aryl; n ranges from 1 to 10; m ranges from 1 to 200; and p ranges from 2 to 1,000. The elastomeric materials prepared from modified silicone resins display robust mechanical properties following prolonged exposure to high temperatures (e.g., 316° C. or higher).
Abstract:
There is provided a method of synthesizing a segmented copolymer that includes mixing one or more α,ω (alpha, omega) amine or α,ω (alpha, omega) hydroxyl terminated polysiloxane first soft segments having an average molecular weight of between about 2500 grams per mole to about 10,000 grams per mole, and one or more diisocyanate species, together to form a first reaction product; mixing the first reaction product and one or more low molecular weight diol or diamine chain extenders each having an average molecular weight of less than 400 grams per mole, together in a solvent to form a segmented copolymer; and, removing the solvent.
Abstract:
Disclosed are conductive composites comprising a polymer, a conductor selected from metals and metal alloys, a compatibilizing agent, and an optional thickening agent.
Abstract:
Electromagnetic interference (EMI) shielding panels and associated methods. An EMI shielding panel includes a binding matrix material and electrically conductive elements distributed throughout the binding matrix material. The electrically conductive elements are aligned such that conductive element longitudinal axes of the electrically conductive elements are at least substantially parallel to a shielding axis of the EMI shielding panel. The electrically conductive elements are configured to at least partially attenuate an incident electromagnetic wave that is incident upon the EMI shielding panel. A method of forming an EMI shielding panel includes providing a shielding mixture that includes electrically conductive elements distributed throughout an uncured binding matrix material, magnetically aligning the electrically conductive elements, and curing the binding matrix material to form the EMI shielding panel.
Abstract:
Methods and formulations for modified silicone resins of Formula (II) are presented. Formula (II) comprises at least one of each of the following subunits: The R1, R2, R3, R6, R7, R8, R9, R10, R11, R12 and R13 are each independently selected from a group consisting of H, alkyl, alkenyl, alkynyl, and aryl. The X is selected from a group consisting of arylene, transition metal, inorganic oxide, and silsesquioxane. The values of t ranges from 1 to 10, y ranges from 1 to 200 and z ranges from 1 to 1,000. The elastomeric materials prepared from modified silicone resins display robust mechanical properties following prolonged exposure to high temperatures (e.g., 316° C. or higher).