Abstract:
In certain examples, methods and semiconductor structures are directed to use of a doped buried region (e.g., Mg-dopant) including a III-Nitride material and having a diffusion path (“ion diffusion path”) that includes hydrogen introduced by using ion implantation via at least one ion species. An ion implantation thermal treatment causes hydrogen to diffuse through the ion implanted path and causes activation of the buried region. In more specific examples in which such semiconductor structures have an ohmic contact region at which a source of a transistor interfaces with the buried region, the ohmic contact region is without etching-based damage due at least in part to the post-ion implantation thermal treatment.
Abstract:
Trenched vertical power field-effect transistors with improved on-resistance and/or breakdown voltage are fabricated. In one or more embodiments, the modulation of the current flow of the transistor occurs in the lateral channel, whereas the voltage is predominantly held in the vertical direction in the off-state. When the device is in the on-state, the current is channeled through an aperture in a current-blocking region after it flows under a gate region into the drift region. In another embodiment, a novel vertical power low-loss semiconductor multi-junction device in III-nitride and non-III-nitride material system is provided. One or more multi-junction device embodiments aim at providing enhancement mode (normally-off) operation alongside ultra-low on resistance and high breakdown voltage.
Abstract:
In certain examples, methods and semiconductor structures are directed to a method comprising steps of forming by monolithically integrating or seeding via polycrystalline diamond (PCD) particles on a GaN-based layer characterized as including GaN in at least a surface region of the GaN-based layer. After the step of seeding, the PCD particles are grown under a selected pressure to form a diamond layer section and to provide a semi-conductive structure that includes the diamond layer section integrated on or against the surface region of the GaN-based layer.
Abstract:
In certain examples, methods and semiconductor structures are directed to an integrated circuit (IC) having a diamond layer section and a GaN-based substrate being monolithically integrated or bonded as part of the same IC. In a specific example, the GaN-based substrate includes GaN, AlxGayN (0
Abstract:
III-nitride vertical transistors and methods of making the same are disclosed. The transistors can include aperture regions that are formed using ion implantation. The resulting transistors can have improved properties.
Abstract:
According to one embodiment, an apparatus includes a substrate, and at least one three dimensional (3D) structure above the substrate. The substrate and the 3D structure each include a semiconductor material. The 3D structure also includes: a first region having a first conductivity type, and a second region coupled to a portion of at least one vertical sidewall of the 3D structure.
Abstract:
A current aperture vertical electron transistor (CAVET) with ammonia (NH3) based molecular beam epitaxy (MBE) grown p-type Gallium Nitride (p-GaN) as a current blocking layer (CBL). Specifically, the CAVET features an active buried Magnesium (Mg) doped GaN layer for current blocking purposes. This structure is very advantageous for high power switching applications and for any device that requires a buried active p-GaN layer for its functionality.
Abstract:
According to one embodiment, an apparatus includes a substrate, and at least one three dimensional (3D) structure above the substrate. The substrate and the 3D structure each include a semiconductor material. The 3D structure also includes: a first region having a first conductivity type, and a second region coupled to a portion of at least one vertical sidewall of the 3D structure.
Abstract:
Trenched vertical power field-effect transistors with improved on-resistance and/or breakdown voltage are fabricated. In one or more embodiments, the modulation of the current flow of the transistor occurs in the lateral channel, whereas the voltage is predominantly held in the vertical direction in the off-state. When the device is in the on-state, the current is channeled through an aperture in a current-blocking region after it flows under a gate region into the drift region. In another embodiment, a novel vertical power low-loss semiconductor multi-junction device in III-nitride and non-III-nitride material system is provided. One or more multi-junction device embodiments aim at providing enhancement mode (normally-off) operation alongside ultra-low on resistance and high breakdown voltage.
Abstract:
A current aperture vertical electron transistor (CAVET) with ammonia (NH3) based molecular beam epitaxy (MBE) grown p-type Gallium Nitride (p-GaN) as a current blocking layer (CBL). Specifically, the CAVET features an active buried Magnesium (Mg) doped GaN layer for current blocking purposes. This structure is very advantageous for high power switching applications and for any device that requires a buried active p-GaN layer for its functionality.