摘要:
A vehicle power controller for a vehicle including a motor that drives the vehicle, a plurality of sensors and a motor controller, wherein the plurality of sensors includes an accelerator sensor for sensing a position of an accelerator pedal and a brake sensor for sensing a position of a brake pedal, and wherein the motor controller controls torque output of the motor. The vehicle power controller includes three components. The first receives signals from the accelerator sensor and the brake sensor. The second converts the signals for the accelerator sensor and the brake sensor into a torque value, and the third outputs the torque value to the motor controller for controlling the torque output of the motor.
摘要:
An electric vehicle propulsion system having a motor with first and second electrically isolated windings and a system control unit for controlling the motor, wherein the system control unit includes a first power bridge for driving the first windings and a second power bridge for driving the second windings.
摘要:
An electric vehicle power distribution module including a chassis containing electric power distribution components. A battery connector is disposed on the chassis for electrically connecting the power distribution components to a battery. A safety cover is secured to the chassis and includes an aperature in a side wall for receiving an electric cable from the battery to be selectively engaged with the battery connector. The aperture is positioned with respect to the battery connector so as to preclude removal of the safety cover from the chassis without disengagement of the electric cable from the battery connector.
摘要:
An integrated system for comprehensive control of an electric power generation system utilizes state machine control having particularly defined control states and permitted control state transitions. In this way, accurate, dependable and safe control of the electric power generation system is provided. Several of these control states may be utilized in conjunction with a utility outage ride-through technique that compensates for a utility outage by predictably controlling the system to bring the system off-line and to bring the system back on-line when the utility returns. Furthermore, a line synchronization technique synchronizes the generated power with the power on the grid when coming back on-line. The line synchronization technique limits the rate of synchronization to permit undesired transient voltages. The line synchronization technique operates in either a stand-alone mode wherein the line frequency is synthesized or in a connected mode which sensed the grid frequency and synchronizes the generated power to this senses grid frequency. The system also includes power factor control via the line synchronization technique or via an alternative power factor control technique. The result is an integrated system providing a high degree of control for an electric power generation system.
摘要:
A communications processor is disclosed for a power generation system that permits data and control signals to be communicated to and from the power generation system and a host computer. The control signals include a power level command and power factor that are sent from a remote host to the power generation system which responds by delivering the requested power level having the desired power factor to a grid. The remote host receives performance data that permits an operator to accurately gauge the performance of the power generation system including the performance and any fault conditions of a line power unit, generator, and engine driving the generator. The communications processor unburdens the line power unit controller that is responsible for controlling power generation from the task of processing input data and driving local displays. The host may also be provided at a location remote from the power generation system. The host, local or remote, preferably includes a graphical user interface that permits an operator to monitor and control the power generation system in an efficient and highly effective manner. A dedicated serial bus connects the communications processors of multiple power generation systems. By utilizing a round-robbin polling of each power generation system across the dedicated serial bus, real-time control can be achieved.
摘要:
An integrated system for comprehensive control of an electric power generation system utilizes state machine control having particularly defined control states and permitted control state transitions. In this way, accurate, dependable and safe control of the electric power generation system is provided. Several of these control states may be utilized in conjunction with a utility outage ride-through technique that compensates for a utility outage by predictably controlling the system to bring the system off-line and to bring the system back on-line when the utility returns. Furthermore, a line synchronization technique synchronizes the generated power with the power on the grid when coming back on-line. The line synchronization technique limits the rate of synchronization to permit undesired transient voltages. The line synchronization technique operates in either a stand-alone mode wherein the line frequency is synthesized or in a connected mode which sensed the grid frequency and synchronizes the generated power to this senses grid frequency. The system also includes power factor control via the line synchronization technique or via an alternative power factor control technique. The result is an integrated system providing a high degree of control for an electric power generation system.
摘要:
An integrated system for comprehensive control of an electric power generation system utilizes state machine control having particularly defined control states and permitted control state transitions. In this way, accurate, dependable and safe control of the electric power generation system is provided. Several of these control states may be utilized in conjunction with a utility outage ride-through technique that compensates for a utility outage by predictably controlling the system to bring the system off-line and to bring the system back on-line when the utility returns. Furthermore, a line synchronization technique synchronizes the generated power with the power on the grid when coming back on-line. The line synchronization technique limits the rate of synchronization to permit undesired transient voltages. The line synchronization technique operates in either a stand-alone mode wherein the line frequency is synthesized or in a connected mode which sensed the grid frequency and synchronizes the generated power to this senses grid frequency. The system also includes power factor control via the line synchronization technique or via an alternative power factor control technique. The result is an integrated system providing a high degree of control for an electric power generation system.
摘要:
A line power unit controls electrical power delivery to a grid from a three phase permanent magnet generator. A line power unit controller receives a power level command and controls a main inverter that draws DC power from a DC bus to deliver the commanded power to a grid. The DC bus is fed DC voltage via a three phase permanent magnet generator and a rectifier. The inverter delivers power to the grid via a filter, transformer and main contactor. The line power unit controller also controls the main contactor to break the connection with the grid. A precharge circuit draws power from the grid to precharge the DC bus to a precharge voltage. Alternatives include a start inverter separate from the main inverter that permits simultaneous delivery of power to the grid and commutation of the permanent magnet generator as a motor to spin an engine connected thereto at a speed sufficient to permit engine starting. Another alternative utilizes a single inverter for engine starting and power delivery which does not permit these operations to be simultaneously performed. Further alternatives include eliminating the transformer by utilizing a high-voltage rated main inverter.
摘要:
An integrated system for comprehensive control of an electric power generation system utilizes state machine control having particularly defined control states and permitted control state transitions. In this way, accurate, dependable and safe control of the electric power generation system is provided. Several of these control states may be utilized in conjunction with a utility outage ride-through technique that compensates for a utility outage by predictably controlling the system to bring the system off-line and to bring the system back on-line when the utility returns. Furthermore, a line synchronization technique synchronizes the generated power with the power on the grid when coming back on-line. The line synchronization technique limits the rate of synchronization to permit undesired transient voltages. The line synchronization technique operates in either a stand-alone mode wherein the line frequency is synthesized or in a connected mode which sensed the grid frequency and synchronizes the generated power to this senses grid frequency. The system also includes power factor control via the line synchronization technique or via an alternative power factor control technique. The result is an integrated system providing a high degree of control for an electric power generation system.