摘要:
A ferroelectric transistor suitable as a memory element has a first gate intermediate layer and a first gate electrode disposed on the surface of a semiconductor substrate and disposed between source/drain regions. The first gate intermediate layer contains at least one ferroelectric layer. In addition to the first gate intermediate layer, a second gate intermediate layer and a second gate electrode are configured between the source/drain regions. The second gate intermediate layer contains a dielectric layer. The first gate electrode and the second gate electrode are connected to each other via a diode structure.
摘要:
A capacitor for a semiconductor configuration and a method for producing a dielectric layer for the capacitor. The dielectric layer consists of cerium oxide, zirconium oxide, hafnium oxide or various films of the materials.
摘要:
A manufacturing method for a capacitor in an integrated memory circuit includes initially depositing a first conducting layer and an auxiliary layer acting as an etch-stop onto a carrier. Then a layer sequence which contains alternating layers of the first material and a second material is produced on top of the first conducting layer and the auxiliary layer. The layer sequence may, in particular, have p+/p− silicon layers or silicon/germanium layers. A layer structure with a base of a capacitor to be produced is formed from the layer sequence. Sides of the layer structure are provided with a conducting supporting structure. An opening is formed inside the layer structure, all the way down to the auxiliary layer and then the auxiliary layer and the layers made of the second material are removed. A free surface of the layers made of the first material and the supporting structure are provided with a capacitor dielectric onto which a counter electrode is applied.
摘要:
The state of a ferroelectric transistor in a memory cell is read or stored, and the threshold voltage of further ferroelectric transistors in further memory cells in the memory matrix is increased during the reading or storing, or is increased permanently. A memory configuration including ferroelectric memory cells is also provided.
摘要:
A field-effect transistor that having a nanowire, which forms a source region, a channel region and a drain region of the field-effect transistor, the nanowire being a semiconducting and/or metallically conductive nanowire. The field-effect transistor also has at least one nanotube, which forms a gate region of the field-effect transistor, the nanotube being a semiconducting and/or metallically conductive nanotube. The nanowire and the nanotube are arranged at a distance from one another or set up in such a manner that it is substantially impossible for there to be a tunneling current between the nanowire and the nanotube, and that the conductivity of the channel region of the nanowire can be controlled by means of a field effect as a result of an electric voltage being applied to the nanotube.
摘要:
An integrated circuit configuration, in particular is a DRAM cell configuration, includes a capacitor disposed on a first substrate and a portion with a contact disposed on a second substrate. The first substrate is connected to the second substrate, with the contact adjoining the capacitor. The first substrate and the second substrate can be connected essentially in an unadjusted manner, if capacitor elements are distributed over the first substrate and a contact surface of the contact is so large that when the substrates are connected, the contact in each case adjoins at least one of the capacitor elements, which then defines the capacitor. The capacitor may include a plurality of capacitor elements, which makes its capacitance especially high. A method is also provided for producing the integrated circuit configuration.
摘要:
An arrangement and process for producing a circuit arrangement is disclosed. The process includes having a layer arrangement, in which two electrically conductive interconnects running substantially parallel to one another are formed on a substrate. At least one auxiliary structure is formed on the substrate and between the two interconnects, running in a first direction, which first direction includes an angle of between 45 degrees and 90 degrees with a connecting axis of the interconnects, running orthogonally with respect to the two interconnects, the at least one auxiliary structure being produced from a material which allows the at least one auxiliary structure to be selectively removed from a dielectric layer. The dielectric layer is formed between the two interconnects, in such a manner that the at least one auxiliary structure is at least partially covered by the dielectric layer.
摘要:
The invention provides in a preferred embodiment an electronic component comprising a first conductive layer, a non-conductive layer and a second conductive layer. A hole is etched through the non-conductive layer. A nanotube, which is provided in said hole, links the first conductive layer to the second conductive layer in a conductive manner.
摘要:
A nonvolatile memory cell, memory cell arrangement, and method for production of a nonvolatile memory cell is disclosed. The nonvolatile memory cell includes a vertical field-effect transistor (FET). The FET contains a nanoelement arranged as a channel region and an electrically insulating layer. The electrically insulating layer at least partially surrounds the nanoelement and acts as a charge storage layer and as a gate-insulating layer. The electrically insulating layer is arranged such that electrical charge carriers may be selectively introduced into or removed from the electrically insulating layer and the electrical conductivity characteristics of the nanoelement may be influenced by the electrical charge carriers introduced into the electrically insulating layer.
摘要:
The invention relates to a vertical integrated component, a component arrangement and a method for production of a vertical integrated component. The vertical integrated component has a first electrical conducting layer, a mid layer, partly embodied from dielectric material on the first electrical conducting layer, a second electrical conducting layer on the mid layer and a nanostructure integrated in a through hold introduced in the mid layer. A first end section of the nanostructure is coupled to the first electrical conducting layer and a second end section is coupled to the second electrical conducting layer. The mid layer includes a third electrical conducting layer between two adjacent dielectric partial layers, the thickness of which is less than the thickness of at least one of the dielectric partial layers.