摘要:
A method of making a high quality thin dielectric layer includes annealing a substrate and a base oxide layer overlying a top surface of the substrate at a first temperature in a first ambient and annealing the substrate and base oxide layer at a second temperature in a second ambient subsequent to the first anneal. The first ambient includes an inert gas ambient selected from the group consisting of a nitrogen, argon, and helium ambient. Prior to the first anneal, the base oxide layer has an initial thickness and an initial density. The first anneal causes a first density and thickness change in the base oxide layer from the initial thickness and density to a first thickness and density, with no incorporation of nitrogen, argon, or helium of the ambient within the base oxide layer. The first thickness is less than the initial thickness and the first density is greater than the initial density. The second anneal causes a second density and thickness change in the base oxide layer from the first thickness and density to a second thickness and density. The second thickness is larger than the first thickness and the second density is on the order of the greater than or equal to the first density.
摘要:
A high quality thin dielectric layer is achieved by annealing a substrate and base oxide layer at a first temperature in a first ambient and subsequently annealing the substrate and base oxide layer at a second temperature in a second ambient, the base oxide layer overlying a top surface of the substrate. Prior to the first anneal, the base oxide layer has an initial thickness and density. The first anneal causes a first density and thickness change in the base oxide layer from the initial thickness and density to a first thickness and density, with no incorporation of a component of the ambient within the base oxide layer. The first thickness is less than the initial thickness and the first density is greater than the initial density. The second anneal causes a second density and thickness change in the base oxide layer from the first thickness and density to a second thickness and density. The second thickness is larger than the first thickness and the second density is on the order of the greater than or equal to the first density.
摘要:
A method and apparatus are described for integrating dual gate oxide (DGO) transistor devices (50, 52) and core transistor devices (51, 53) on a single substrate (15) having a silicon germanium channel layer (21) in the PMOS device areas (112, 113), where each DGO transistor device (50, 52) includes a metal gate (25), an upper gate oxide region (60, 84) formed from a second, relatively higher high-k metal oxide layer (24), and a lower gate oxide region (58, 84) formed from a first relatively lower high-k layer (22), and where each core transistor device (51, 53) includes a metal gate (25) and a core gate dielectric layer (72, 98) formed from only the second, relatively higher high-k metal oxide layer (24).
摘要:
A method of forming a semiconductor device includes forming a high dielectric constant material over a semiconductor substrate, forming a conductive material over the high dielectric constant material, and performing an anneal in a non-oxidizing ambient using ultraviolet radiation to remove defects in the high dielectric constant material. Examples of a non-oxidizing ambient include for example nitrogen, deuterium, a deuterated forming gas (N2/D2), helium, argon or a combination of any two or more of these. Additional anneals using ultraviolet radiation may be performed. These additional anneals may occur in non-oxidizing or oxidizing ambients.
摘要翻译:一种形成半导体器件的方法包括在半导体衬底上形成高介电常数材料,在高介电常数材料上形成导电材料,并使用紫外线辐射在非氧化环境中进行退火以去除高电介质中的缺陷 恒定材料。 非氧化性环境的实例包括例如氮,氘,氘代形成气体(N 2 / D 2),氦气,氩气或这些中的任何两种或更多种的组合。 可以进行使用紫外线辐射的附加退火。 这些额外的退火可能发生在非氧化或氧化环境中。
摘要:
A method of forming a semiconductor device includes forming a high dielectric constant material over a semiconductor substrate, forming a conductive material over the high dielectric constant material, and performing an anneal in a non-oxidizing ambient using ultraviolet radiation to remove defects in the high dielectric constant material. Examples of a non-oxidizing ambient include for example nitrogen, deuterium, a deuterated forming gas (N2/D2), helium, argon or a combination of any two or more of these. Additional anneals using ultraviolet radiation may be performed. These additional anneals may occur in non-oxidizing or oxidizing ambients.
摘要翻译:一种形成半导体器件的方法包括在半导体衬底上形成高介电常数材料,在高介电常数材料上形成导电材料,并使用紫外线辐射在非氧化环境中进行退火以去除高电介质中的缺陷 恒定材料。 非氧化性环境的实例包括例如氮,氘,氘化形成气体(N 2 / D 2),氦气,氩气或这些中的任何两种或更多种的组合。 可以进行使用紫外线辐射的附加退火。 这些额外的退火可能发生在非氧化或氧化环境中。
摘要:
A method and apparatus are described for integrating dual gate oxide (DGO) transistor devices (50, 52) and core transistor devices (51, 53) on a single substrate (15) having a silicon germanium channel layer (21) in the PMOS device areas (112, 113), where each DGO transistor device (50, 52) includes a metal gate (25), an upper gate oxide region (60, 84) formed from a second, relatively higher high-k metal oxide layer (24), and a lower gate oxide region (58, 84) formed from a first relatively lower high-k layer (22), and where each core transistor device (51, 53) includes a metal gate (25) and a core gate dielectric layer (72, 98) formed from only the second, relatively higher high-k metal oxide layer (24).