摘要:
The invention is an automated advanced tissue engineering system that comprises a housing in which one or more tissue engineering modules are accommodated together with a central microprocessor that controls functioning of the tissue engineering modules. In one embodiment, the tissue engineering module comprises a housing supporting one or more bioreactor chamber assemblies and a fluid reservoir operationally engageable with the housing. The bioreactor chamber assemblies may be selected depending on the end product option desired and may include, for example, a cell therapy bioreactor chamber, a single implant bioreactor chamber and a multiple (mosaic) implant bioreactor chamber.
摘要:
The invention is an automated advanced tissue engineering system that comprises a housing in which one or more tissue engineering modules are accomodated together with a central microprocessor that controls functioning of the tissue engineering modules. In one embodiment, the tissue engineering module comprises a housing supporting one or more bioreactor chamber assemblies and a fluid reservoir operationally engageable with the housing. The bioreactor chamber assemblies may be selected depending on the end product option desired and may include, for example, a cell therapy bioreactor chamber, a single implant bioreactor chamber and a multiple (mosaic) implant bioreactor chamber.
摘要:
The invention provides systems, modules, bioreactor and methods for the automated culture, proliferation, differentiation, production and maintenance of tissue engineered products. In one aspect is an automated tissue engineering system comprising a housing, at least one bioreactor supported by the housing, the bioreactor facilitating physiological cellular functions and/or the generation of one or more tissue constructs from cell and/or tissue sources. A fluid containment system is supported by the housing and is in fluid communication with the bioreactor. One or more sensors are associated with one or more of the housing, bioreactor or fluid containment system for monitoring parameters related to the physiological cellular functions and/or generation of tissue constructs; and a microprocessor linked to one or more of the sensors. The systems, methods and products of the invention find use in various clinical and laboratory settings.
摘要:
The invention is directed to an automated materials processing furnace capable of high temperature operation. The furnace is moveable and enables sample insertion into either end and includes a stationary sample affixed to a replaceable tray. The furnace enables the processing of material samples under both terrestrial and microgravity conditions and also provides for the monitoring of process parameters.
摘要:
The present invention is directed to a synthetic biomaterial compound based on stabilized calcium phosphates and more particularly to the molecular, structural and physical characterization of this compound. The compound comprises calcium, oxygen and phosphorous, wherein at least one of the elements is substituted with an element having an ionic radius of approximately 0.1 to 1.1 Å. The knowledge of the specific molecular and chemical properties of the compound allows for the development of several uses of the compound in various bone-related clinical conditions.
摘要:
Novel peptides are described which comprise an amino acid motif selected from the group consisting of “PG”, “GP”, “PI” and “IG” and having up to 10 amino acids upstream and/or downstream of the amino acid motif, wherein “P” in the motif is proline or hydroxyproline and the peptide stimulates the development, maintenance and repair of bone, cartilage and associated connective tissue. The invention further relates to pharmaceutical compositions of these peptides, as well as therapeutic and prophylactic uses of such peptides.
摘要:
An improved process for producing a thin film of calcium phosphate entities to support bone cell activity thereon. The material to be sintered is prepared by combining a solution of ammonium phosphate with a solution of calcium nitrate to form a sol-gel containing hydroxyapatite. A film of the sol gel is applied to at least one side of the substrate and the film coated on the substrate is sintered to form a solid film of calcium phosphate entities. The improvement in the process comprising sintering the film at temperatures selected from a range of temperatures which optimize a composition of calcium phosphate entities in the film. The sintering step converts hydroxyapatite to .alpha.-tricalcium phosphate where extent of such conversion is temperature dependent. The optimized composition comprises a ratio of hydroxyapatite to .alpha.-tricalcium phosphate in the range of 50:50 to 20:80. A sintering temperature is selected to provide these ratios. The sintering temperature is selected from a range of 920.degree. C. up to 1100.degree. C. where the higher the select temperature, the greater the amount of .alpha.-tricalcium phosphate in the ratio.
摘要:
Novel peptides are described which comprise an amino acid motif selected from the group consisting of “PG”, “GP”, “PI” and “IG” and having up to 10 amino acids upstream and/or downstream of the amino acid motif, wherein “P” in the motif is proline or hydroxyproline and the peptide stimulates the development, maintenance and repair of bone, cartilage and associated connective tissue. The invention further relates to pharmaceutical compositions of these peptides, as well as therapeutic and prophylactic uses of such peptides.
摘要:
The present invention is directed to a synthetic biomaterial compound based on stabilized calcium phosphates and more particularly to the molecular, structural and physical characterization of this compound. The compound comprises calcium, oxygen and phosphorous, wherein at least one of the elements is substituted with an element having an ionic radius of approximately 0.1 to 1.1 Å. The knowledge of the specific molecular and chemical properties of the compound allows for the development of several uses of the compound in various bone-related clinical conditions.
摘要:
The present invention is directed to a synthetic biomaterial compound based on stabilized calcium phosphates and more particularly to the molecular, structural and physical characterization of this compound. The compound comprises calcium, oxygen and phosphorous, wherein at least one of the elements is substituted with an element having an ionic radius of approximately 0.1 to 1.1 Å. The knowledge of the specific molecular and chemical properties of the compound allows for the development of several uses of the compound in various bone-related clinical conditions.