Abstract:
A plasma processing method includes applying a pulse wave of high frequency electric power for plasma generation and a pulse wave of high frequency electric power for bias whose frequency is lower than that of the high frequency electric power for plasma generation on the mounting table; and controlling the pulse wave of the high frequency electric power for plasma generation and the pulse wave of the high frequency electric power for bias such that a predetermined phase difference is generated between the pulse wave of the high frequency electric power for plasma generation and the pulse wave of the high frequency electric power for bias, and a duty ratio of the high frequency electric power for plasma generation becomes greater than or equal to a duty ratio of the high frequency electric power for bias.
Abstract:
There is provision of a member used in a plasma processing apparatus configured to generate plasma from a gas in a processing vessel and to process a substrate disposed on a mounting base in the processing vessel using the plasma. The member includes a surface exposed to the plasma in the processing vessel in a state installed in the processing vessel, and a coating layer including cobalt which covers a part of the surface.
Abstract:
A plasma processing method includes applying a pulse wave of high frequency electric power for plasma generation and a pulse wave of high frequency electric power for bias whose frequency is lower than that of the high frequency electric power for plasma generation on the mounting table; and controlling the pulse wave of the high frequency electric power for plasma generation and the pulse wave of the high frequency electric power for bias such that a predetermined phase difference is generated between the pulse wave of the high frequency electric power for plasma generation and the pulse wave of the high frequency electric power for bias, and a duty ratio of the high frequency electric power for plasma generation becomes greater than or equal to a duty ratio of the high frequency electric power for bias.
Abstract:
A recipe updating method of a plasma processing apparatus includes: performing a plasma processing on a substrate mounted on a stage using a first recipe including an application timing of a radio-frequency power for plasma generation; measuring a reference timing at which a temperature of the stage drops to a minimum value and a first maximum value of the temperature of the stage in association with the first recipe; performing the plasma processing on the substrate using a second recipe obtained by changing the application timing of the first recipe to the reference timing; measuring a second maximum value of the temperature of the stage in association with the second recipe; and updating the first recipe to the second recipe when the second maximum value is smaller than the first maximum value.
Abstract:
A plasma processing method includes applying a pulse wave of high frequency electric power for plasma generation and a pulse wave of high frequency electric power for bias whose frequency is lower than that of the high frequency electric power for plasma generation on the mounting table; and controlling the pulse wave of the high frequency electric power for plasma generation and the pulse wave of the high frequency electric power for bias such that a predetermined phase difference is generated between the pulse wave of the high frequency electric power for plasma generation and the pulse wave of the high frequency electric power for bias, and a duty ratio of the high frequency electric power for plasma generation becomes greater than or equal to a duty ratio of the high frequency electric power for bias.
Abstract:
A method of etching an etching target layer containing polycrystalline silicon includes preparing a target object including the etching target layer and a mask formed on the etching target layer; and etching the etching target layer with the mask. Further, the mask includes a first mask portion formed of polycrystalline silicon and a second mask portion interposed between the first mask portion and the etching target layer and formed of silicon oxide. Furthermore, in the etching of the etching target layer, a first gas for etching the etching target layer, a second gas for removing a deposit adhering to the mask, and a third gas for protecting the first mask portion are supplied into a processing vessel in which the target object is accommodated, and plasma of these gases is generated within the processing vessel.
Abstract:
A method for etching a silicon film formed on a substrate includes supplying HBr gas, NF3 gas, and O2 gas into a chamber and performing a plurality of etching processes on the silicon film with a plasma generated by the supplied HBr gas, NF3 gas, and O2 gas, gradually reducing a flow rate of the HBr gas during the plurality of etching processes, and adjusting a flow rate of the O2 gas according to the reduction of the HBr gas.
Abstract:
Disclosed is a plasma processing method which includes a gas supplying process, a power supplying process, and an etching process. In the gas supplying process, a processing gas is supplied into a processing container in which an object to be processed is disposed. In the power supplying process, a plasma generating power of a frequency ranging from about 100 MHz to about 150 MHz as a power for generating plasma of the processing gas supplied into the processing container, and a biasing power which is a power having a frequency lower than that of the plasma generating power are supplied. In the etching process, the object to be processed is etched by the plasma of the processing gas while the biasing power is pulse-modulated so that the duty ratio ranges from about 10% to about 70% and the frequency ranges from about 5 kHz to about 20 kHz.
Abstract:
A method of processing a substrate using a substrate processing apparatus that has an electrostatic chuck including an insulating member inside which an electrode is included and provides a plasma process to a substrate mounted on the electrostatic chuck includes a first process of supplying a heat transfer gas having a second gas pressure to a back surface of the substrate while eliminating electric charges in the substrate using plasma of a process gas having a first gas pressure.
Abstract:
A method of etching an etching target layer containing polycrystalline silicon includes preparing a target object including the etching target layer and a mask formed on the etching target layer; and etching the etching target layer with the mask. Further, the mask includes a first mask portion formed of polycrystalline silicon and a second mask portion interposed between the first mask portion and the etching target layer and formed of silicon oxide. Furthermore, in the etching of the etching target layer, a first gas for etching the etching target layer, a second gas for removing a deposit adhering to the mask, and a third gas for protecting the first mask portion are supplied into a processing vessel in which the target object is accommodated, and plasma of these gases is generated within the processing vessel.