Abstract:
There is provided a sputtering apparatus comprising: a target from which sputtered particles are emitted; a substrate support configured to support a substrate; a substrate moving mechanism configured to move the substrate in one direction; and a shielding member disposed between the target and the substrate support and having an opening through which the sputtered particles pass. The shielding member includes a first shielding member and a second shielding member disposed in a vertical direction.
Abstract:
There is provided a film formation apparatus which forms a film on a substrate by sputtering. The apparatus comprises: a substrate holder configured to hold the substrate; and a plurality of cathodes configured to hold targets that emit sputtered particles, and connected to a power supply. At least one of the plurality of cathodes holds the targets of a plurality of types.
Abstract:
Disclosed is a PVD processing method including a first process, a second process, a third process, and a fourth process. In the first process, an opening of a shield, which is provided between a first target containing a metal oxide and a second target containing a metal constituting the metal oxide, and a stage on which a substrate as a film formation object is placed, is made to coincide with the first target so as to expose the first target to the stage and the opening is brought close to the first target. In the second process, sputtering is performed using the first target. In the third process, the opening is made to coincide with the second target so as to expose the first target to the stage, and the opening is brought close to the second target. In the fourth process, sputtering is performed using the second target.
Abstract:
A magnetron sputtering apparatus includes a target disposed to face a substrate mounted on a mounting part in a vacuum vessel and a magnet arrangement assembly installed at a back side of the target and having an array of magnets, the magnetron sputtering apparatus including: a gas supply part configured to supply a plasma generation gas into the vacuum vessel; a rotary mechanism configured to rotate the mounting part; a power supply part configured to apply a voltage to the target; a moving mechanism configured to move the magnet arrangement assembly between a first region and a second region; and a control unit configured to output a control signal, such that an average moving speed of the magnet arrangement assembly is different between the first region and the second region.
Abstract:
A magnetron sputtering apparatus is provided. The apparatus comprises: a vacuum chamber storing a substrate; a plurality of sputtering mechanisms, each including a target having one surface facing the inside of the vacuum chamber, a magnet array, and a moving mechanism for reciprocating the magnet array between a first position and a second position on the other surface of the target; a power supply for forming plasma by supplying power to targets of selected sputtering mechanisms for film formation; a gas supplier for supplying a gas for plasma formation into the vacuum chamber; and a controller for outputting a control signal, in performing the film formation, such that magnet arrays of selected and unselected sputtering mechanisms, extension lines of moving paths of the magnet arrays thereof intersecting each other in plan view, move synchronously or are located at certain positions so as to be distinct from each other.
Abstract:
The substrate transfer apparatus includes a planar motor provided in a transfer chamber and having coils arranged therein; a transfer unit movable on the planar motor; and a control unit configured to control an energization of the coils. The transfer unit includes two bases having magnets arranged thereon and configured to be movable on the planar motor, a substrate support member configured to support a substrate, and a link mechanism configured to connect the two bases and the substrate support member to each other.
Abstract:
A film forming system comprises a chamber, a stage, a holder, a cathode magnet, a shield, a first moving mechanism, and a second moving mechanism. The chamber provides a processing space. The stage is provided in the processing space and configured to support a substrate. The holder is configured to hold a target that is provided in the processing space. The cathode magnet is provided outside the chamber with respect to the target. The shield has a slit and is configured to block particles released from the target around the slit. The first moving mechanism is configured to move the shield between the stage and the target along a scanning direction substantially parallel to a surface of the substrate mounted on the stage. The second moving mechanism is configured to move the cathode magnet along the scanning direction.
Abstract:
The present disclosure provides a vacuum-processing apparatus for forming a metal film on a substrate by sputtering targets with ions of plasma, and then oxidizing the metal film, the apparatus including: a first target composed of a material having a property of adsorbing oxygen; a second target composed of a metal; a power supply unit configured to apply a voltage to the targets; a shutter configured to prevent particles generated from one of the targets from adhering to the other of the targets; a shielding member; an oxygen supply unit configured to supply an oxygen-containing gas to the substrate mounted on the mounting unit; and a control unit configured to perform supplying a plasma-generating voltage to the targets and sputtering the targets and supplying the oxygen-containing gas from the oxygen supply unit to the substrate.
Abstract:
A substrate transfer apparatus includes a planar motor provided in a transfer chamber and having coils arranged therein, a transfer unit movable on the planar motor, and a control unit configured to control an energization of the coils. The transfer unit includes two bases having magnets arranged thereon and configured to be movable on the planar motor, a substrate support member configured to support a substrate, and a link mechanism configured to connect the two bases and the substrate support member to each other.
Abstract:
There is provided a mounting table system which includes: a mounting table rotatably installed so as to mount a substrate thereon; a plurality of heating parts installed in the mounting table, and configured to heat the mounting table; a single power source configured to supply an electric power to the plurality of heating parts; and a power switching part configured to switch from a first heating part among the plurality of heating parts to which the electric power is supplied from the single power source, to a second heating part among the plurality of heating parts, depending on a rotational angle of the mounting table.