Abstract:
A deposition device according to one embodiment includes a processing container. A mounting table is installed inside the processing container, and a metal target is installed above the mounting table. Further, a head is configured to inject an oxidizing gas toward the mounting table. This head is configured to move between a first region that is defined between the metal target and a mounting region where a target object is mounted on the mounting table and a second region spaced apart from a space defined between the metal target and the mounting region.
Abstract:
The present disclosure provides a vacuum-processing apparatus for forming a metal film on a substrate by sputtering targets with ions of plasma, and then oxidizing the metal film, the apparatus including: a first target composed of a material having a property of adsorbing oxygen; a second target composed of a metal; a power supply unit configured to apply a voltage to the targets; a shutter configured to prevent particles generated from one of the targets from adhering to the other of the targets; a shielding member; an oxygen supply unit configured to supply an oxygen-containing gas to the substrate mounted on the mounting unit; and a control unit configured to perform supplying a plasma-generating voltage to the targets and sputtering the targets and supplying the oxygen-containing gas from the oxygen supply unit to the substrate.
Abstract:
A film forming apparatus for forming a film by magnetron sputtering includes a substrate support supporting the substrate, a holder holding a target for emitting sputtered particles, a magnet unit having a magnet, first and second movement mechanisms configured to periodically move the substrate support and the magnet unit, respectively, and a controller. The controller is configured to control the first movement mechanism and the second movement mechanism so that a phase in a periodic movement of the substrate support remains the same at a start of film formation and at an end of film formation, a phase in a periodic movement of the magnet unit remains the same at a start of film formation and at an end of film formation, and the phase in the periodic movement of the substrate support and the phase in the periodic movement of the magnet unit do not match during film formation.
Abstract:
A film forming apparatus for forming a metal oxide film on a substrate, includes: a substrate support part configured to support the substrate; a heating mechanism configured to heat the substrate supported by the substrate support part; a processing container in which the substrate support part is provided; a holder configured to hold a metal material target inside the processing container and connected to a power source; a gas supply part configured to supply an oxygen gas into the processing container; and a controller, wherein the controller is configured to control the heating mechanism, the power source, and the gas supply part so as to execute alternately and repeatedly: forming a predetermined film on the substrate inside the processing container by reactive sputtering in a metal mode; and forming a target metal oxide film by causing the predetermined film to react with an oxygen gas inside the processing container.
Abstract:
The present disclosure provides a vacuum-processing apparatus for forming a metal film on a substrate by sputtering targets with ions of plasma, and then oxidizing the metal film, the apparatus including: a first target composed of a material having a property of adsorbing oxygen; a second target composed of a metal; a power supply unit configured to apply a voltage to the targets; a shutter configured to prevent particles generated from one of the targets from adhering to the other of the targets; a shielding member; an oxygen supply unit configured to supply an oxygen-containing gas to the substrate mounted on the mounting unit; and a control unit configured to perform supplying a plasma-generating voltage to the targets and sputtering the targets and supplying the oxygen-containing gas from the oxygen supply unit to the substrate.
Abstract:
There is provided a film thickness measurement method which measures a film thickness of a specific film to be measured in a multilayer film in situ in a film formation system that forms the multilayer film on a substrate, the method comprising: regarding a plurality of films located under the film to be measured as one underlayer film, measuring a film thickness of the underlayer film, and deriving an optical constant of the underlayer film by spectroscopic interferometry; and after the film to be measured is formed, deriving a film thickness of the film to be measured by spectroscopic interferometry using the film thickness and the optical constant of the underlayer film.
Abstract:
A magnetron sputtering apparatus includes a target disposed to face a substrate mounted on a mounting part in a vacuum vessel and a magnet arrangement assembly installed at a back side of the target and having an array of magnets, the magnetron sputtering apparatus including: a gas supply part configured to supply a plasma generation gas into the vacuum vessel; a rotary mechanism configured to rotate the mounting part; a power supply part configured to apply a voltage to the target; a moving mechanism configured to move the magnet arrangement assembly between a first region and a second region; and a control unit configured to output a control signal, such that an average moving speed of the magnet arrangement assembly is different between the first region and the second region.
Abstract:
A film forming apparatus for forming a film on a substrate by using a magnetron sputtering method. The film forming apparatus includes: a substrate holder configured to hold a substrate; a target holder configured to hold a target made of a ferromagnetic material to face the substrate holder; a magnet provided on a surface of the target holder opposite to the substrate holder, and configured to leak a magnetic field to a front surface of the target held by the target holder that is a surface close to the substrate holder; and a magnetic field strength measurement device configured to measure a strength of the magnetic field.
Abstract:
To provide technology that can increase the productivity of an apparatus when magnetron sputtering is carried out using a target formed from magnetic material. The present disclosure is an apparatus provided with: a cylindrical body that is a target formed from magnetic material, disposed above a substrate; a rotating mechanism that rotates this cylindrical body around the axis of the cylindrical body; a magnet array provided inside a hollow part of the cylindrical body; and a power supply that applies voltage to the cylindrical body. Furthermore, the magnet array has a cross sectional profile, orthogonal to the axis of the cylindrical body. Thus, even if a target with a comparatively large thickness is used, reductions in the intensity of the magnetic field that leaks from the target can be suppressed, and local progress in erosion can be suppressed.